This file is indexed.

/usr/include/dlib/svm/krr_trainer.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_KRR_TRAInER_Hh_
#define DLIB_KRR_TRAInER_Hh_

#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "empirical_kernel_map.h"
#include "linearly_independent_subset_finder.h"
#include "../statistics.h"
#include "rr_trainer.h"
#include "krr_trainer_abstract.h"
#include <vector>
#include <iostream>

namespace dlib
{
    template <
        typename K 
        >
    class krr_trainer
    {

    public:
        typedef K kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        krr_trainer (
        ) :
            verbose(false),
            max_basis_size(400),
            ekm_stale(true)
        {
        }

        void be_verbose (
        )
        {
            verbose = true;
            trainer.be_verbose();
        }

        void be_quiet (
        )
        {
            verbose = false;
            trainer.be_quiet();
        }

        void use_regression_loss_for_loo_cv (
        )
        {
            trainer.use_regression_loss_for_loo_cv();
        }

        void use_classification_loss_for_loo_cv (
        )
        {
            trainer.use_classification_loss_for_loo_cv();
        }

        bool will_use_regression_loss_for_loo_cv (
        ) const
        {
            return trainer.will_use_regression_loss_for_loo_cv();
        }

        const kernel_type get_kernel (
        ) const
        {
            return kern;
        }

        void set_kernel (
            const kernel_type& k
        )
        {
            kern = k;
        }

        template <typename T>
        void set_basis (
            const T& basis_samples
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(basis_samples.size() > 0 && is_vector(mat(basis_samples)),
                "\tvoid krr_trainer::set_basis(basis_samples)"
                << "\n\t You have to give a non-empty set of basis_samples and it must be a vector"
                << "\n\t basis_samples.size():                       " << basis_samples.size() 
                << "\n\t is_vector(mat(basis_samples)): " << is_vector(mat(basis_samples)) 
                << "\n\t this: " << this
                );

            basis = mat(basis_samples);
            ekm_stale = true;
        }

        bool basis_loaded (
        ) const
        {
            return (basis.size() != 0);
        }

        void clear_basis (
        )
        {
            basis.set_size(0);
            ekm.clear();
            ekm_stale = true;
        }

        unsigned long get_max_basis_size (
        ) const
        {
            return max_basis_size;
        }

        void set_max_basis_size (
            unsigned long max_basis_size_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(max_basis_size_ > 0,
                "\t void krr_trainer::set_max_basis_size()"
                << "\n\t max_basis_size_ must be greater than 0"
                << "\n\t max_basis_size_: " << max_basis_size_ 
                << "\n\t this:            " << this
                );

            max_basis_size = max_basis_size_;
        }

        void set_lambda (
            scalar_type lambda_ 
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(lambda_ >= 0,
                "\t void krr_trainer::set_lambda()"
                << "\n\t lambda must be greater than or equal to 0"
                << "\n\t lambda_: " << lambda_
                << "\n\t this:   " << this
                );

            trainer.set_lambda(lambda_);
        }

        const scalar_type get_lambda (
        ) const
        {
            return trainer.get_lambda();
        }

        template <typename EXP>
        void set_search_lambdas (
            const matrix_exp<EXP>& lambdas
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_vector(lambdas) && lambdas.size() > 0 && min(lambdas) > 0,
                "\t void krr_trainer::set_search_lambdas()"
                << "\n\t lambdas must be a non-empty vector of values"
                << "\n\t is_vector(lambdas): " << is_vector(lambdas) 
                << "\n\t lambdas.size():     " << lambdas.size()
                << "\n\t min(lambdas):       " << min(lambdas) 
                << "\n\t this:   " << this
                );

            trainer.set_search_lambdas(lambdas);
        }

        const matrix<scalar_type,0,0,mem_manager_type>& get_search_lambdas (
        ) const
        {
            return trainer.get_search_lambdas();
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            std::vector<scalar_type> temp;
            scalar_type temp2;
            return do_train(mat(x), mat(y), false, temp, temp2);
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            std::vector<scalar_type>& loo_values
        ) const
        {
            scalar_type temp;
            return do_train(mat(x), mat(y), true, loo_values, temp);
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            std::vector<scalar_type>& loo_values,
            scalar_type& lambda_used 
        ) const
        {
            return do_train(mat(x), mat(y), true, loo_values, lambda_used);
        }


    private:

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            const bool output_loo_values,
            std::vector<scalar_type>& loo_values,
            scalar_type& the_lambda
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(x,y),
                "\t decision_function krr_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t is_vector(x): " << is_vector(x)
                << "\n\t is_vector(y): " << is_vector(y)
                << "\n\t x.size():     " << x.size() 
                << "\n\t y.size():     " << y.size() 
                );

#ifdef ENABLE_ASSERTS
            if (get_lambda() == 0 && will_use_regression_loss_for_loo_cv() == false)
            {
                // make sure requires clause is not broken
                DLIB_ASSERT(is_binary_classification_problem(x,y),
                    "\t decision_function krr_trainer::train(x,y)"
                    << "\n\t invalid inputs were given to this function"
                    );
            }
#endif

            // The first thing we do is make sure we have an appropriate ekm ready for use below.
            if (basis_loaded())
            {
                if (ekm_stale)
                {
                    ekm.load(kern, basis);
                    ekm_stale = false;
                }
            }
            else
            {
                linearly_independent_subset_finder<kernel_type> lisf(kern, max_basis_size);
                fill_lisf(lisf, x);
                ekm.load(lisf);
            }

            if (verbose)
            {
                std::cout << "\nNumber of basis vectors used: " << ekm.out_vector_size() << std::endl;
            }

            typedef matrix<scalar_type,0,1,mem_manager_type> column_matrix_type;

            running_stats<scalar_type> rs;

            // Now we project all the x samples into kernel space using our EKM 
            matrix<column_matrix_type,0,1,mem_manager_type > proj_x;
            proj_x.set_size(x.size());
            for (long i = 0; i < proj_x.size(); ++i)
            {
                scalar_type err;
                // Note that we also append a 1 to the end of the vectors because this is
                // a convenient way of dealing with the bias term later on.
                if (verbose == false)
                {
                    proj_x(i) = ekm.project(x(i));
                }
                else
                {
                    proj_x(i) = ekm.project(x(i),err);
                    rs.add(err);
                }
            }

            if (verbose)
            {
                std::cout << "Mean EKM projection error:                  " << rs.mean() << std::endl;
                std::cout << "Standard deviation of EKM projection error: " << rs.stddev() << std::endl;
            }


            decision_function<linear_kernel<matrix<scalar_type,0,0,mem_manager_type> > > lin_df;

            if (output_loo_values)
                lin_df = trainer.train(proj_x,y, loo_values, the_lambda);
            else
                lin_df = trainer.train(proj_x,y);

            // convert the linear decision function into a kernelized one.
            decision_function<kernel_type> df;
            df = ekm.convert_to_decision_function(lin_df.basis_vectors(0));
            df.b = lin_df.b; 

            // If we used an automatically derived basis then there isn't any point in
            // keeping the ekm around.  So free its memory.
            if (basis_loaded() == false)
            {
                ekm.clear();
            }

            return df;
        }


        /*!
            CONVENTION
                - if (ekm_stale) then
                    - kern or basis have changed since the last time
                      they were loaded into the ekm

                - get_lambda() == trainer.get_lambda()
                - get_kernel() == kern
                - get_max_basis_size() == max_basis_size
                - will_use_regression_loss_for_loo_cv() == trainer.will_use_regression_loss_for_loo_cv() 
                - get_search_lambdas() == trainer.get_search_lambdas() 

                - basis_loaded() == (basis.size() != 0)
        !*/

        rr_trainer<linear_kernel<matrix<scalar_type,0,0,mem_manager_type> > > trainer;

        bool verbose;


        kernel_type kern;
        unsigned long max_basis_size;

        matrix<sample_type,0,1,mem_manager_type> basis;
        mutable empirical_kernel_map<kernel_type> ekm;
        mutable bool ekm_stale; 

    }; 

}

#endif // DLIB_KRR_TRAInER_Hh_