/usr/include/dlib/svm/krr_trainer.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_KRR_TRAInER_Hh_
#define DLIB_KRR_TRAInER_Hh_
#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "empirical_kernel_map.h"
#include "linearly_independent_subset_finder.h"
#include "../statistics.h"
#include "rr_trainer.h"
#include "krr_trainer_abstract.h"
#include <vector>
#include <iostream>
namespace dlib
{
template <
typename K
>
class krr_trainer
{
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
krr_trainer (
) :
verbose(false),
max_basis_size(400),
ekm_stale(true)
{
}
void be_verbose (
)
{
verbose = true;
trainer.be_verbose();
}
void be_quiet (
)
{
verbose = false;
trainer.be_quiet();
}
void use_regression_loss_for_loo_cv (
)
{
trainer.use_regression_loss_for_loo_cv();
}
void use_classification_loss_for_loo_cv (
)
{
trainer.use_classification_loss_for_loo_cv();
}
bool will_use_regression_loss_for_loo_cv (
) const
{
return trainer.will_use_regression_loss_for_loo_cv();
}
const kernel_type get_kernel (
) const
{
return kern;
}
void set_kernel (
const kernel_type& k
)
{
kern = k;
}
template <typename T>
void set_basis (
const T& basis_samples
)
{
// make sure requires clause is not broken
DLIB_ASSERT(basis_samples.size() > 0 && is_vector(mat(basis_samples)),
"\tvoid krr_trainer::set_basis(basis_samples)"
<< "\n\t You have to give a non-empty set of basis_samples and it must be a vector"
<< "\n\t basis_samples.size(): " << basis_samples.size()
<< "\n\t is_vector(mat(basis_samples)): " << is_vector(mat(basis_samples))
<< "\n\t this: " << this
);
basis = mat(basis_samples);
ekm_stale = true;
}
bool basis_loaded (
) const
{
return (basis.size() != 0);
}
void clear_basis (
)
{
basis.set_size(0);
ekm.clear();
ekm_stale = true;
}
unsigned long get_max_basis_size (
) const
{
return max_basis_size;
}
void set_max_basis_size (
unsigned long max_basis_size_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(max_basis_size_ > 0,
"\t void krr_trainer::set_max_basis_size()"
<< "\n\t max_basis_size_ must be greater than 0"
<< "\n\t max_basis_size_: " << max_basis_size_
<< "\n\t this: " << this
);
max_basis_size = max_basis_size_;
}
void set_lambda (
scalar_type lambda_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(lambda_ >= 0,
"\t void krr_trainer::set_lambda()"
<< "\n\t lambda must be greater than or equal to 0"
<< "\n\t lambda_: " << lambda_
<< "\n\t this: " << this
);
trainer.set_lambda(lambda_);
}
const scalar_type get_lambda (
) const
{
return trainer.get_lambda();
}
template <typename EXP>
void set_search_lambdas (
const matrix_exp<EXP>& lambdas
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(lambdas) && lambdas.size() > 0 && min(lambdas) > 0,
"\t void krr_trainer::set_search_lambdas()"
<< "\n\t lambdas must be a non-empty vector of values"
<< "\n\t is_vector(lambdas): " << is_vector(lambdas)
<< "\n\t lambdas.size(): " << lambdas.size()
<< "\n\t min(lambdas): " << min(lambdas)
<< "\n\t this: " << this
);
trainer.set_search_lambdas(lambdas);
}
const matrix<scalar_type,0,0,mem_manager_type>& get_search_lambdas (
) const
{
return trainer.get_search_lambdas();
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
std::vector<scalar_type> temp;
scalar_type temp2;
return do_train(mat(x), mat(y), false, temp, temp2);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
std::vector<scalar_type>& loo_values
) const
{
scalar_type temp;
return do_train(mat(x), mat(y), true, loo_values, temp);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
std::vector<scalar_type>& loo_values,
scalar_type& lambda_used
) const
{
return do_train(mat(x), mat(y), true, loo_values, lambda_used);
}
private:
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> do_train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
const bool output_loo_values,
std::vector<scalar_type>& loo_values,
scalar_type& the_lambda
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(is_learning_problem(x,y),
"\t decision_function krr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t is_vector(x): " << is_vector(x)
<< "\n\t is_vector(y): " << is_vector(y)
<< "\n\t x.size(): " << x.size()
<< "\n\t y.size(): " << y.size()
);
#ifdef ENABLE_ASSERTS
if (get_lambda() == 0 && will_use_regression_loss_for_loo_cv() == false)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(x,y),
"\t decision_function krr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
);
}
#endif
// The first thing we do is make sure we have an appropriate ekm ready for use below.
if (basis_loaded())
{
if (ekm_stale)
{
ekm.load(kern, basis);
ekm_stale = false;
}
}
else
{
linearly_independent_subset_finder<kernel_type> lisf(kern, max_basis_size);
fill_lisf(lisf, x);
ekm.load(lisf);
}
if (verbose)
{
std::cout << "\nNumber of basis vectors used: " << ekm.out_vector_size() << std::endl;
}
typedef matrix<scalar_type,0,1,mem_manager_type> column_matrix_type;
running_stats<scalar_type> rs;
// Now we project all the x samples into kernel space using our EKM
matrix<column_matrix_type,0,1,mem_manager_type > proj_x;
proj_x.set_size(x.size());
for (long i = 0; i < proj_x.size(); ++i)
{
scalar_type err;
// Note that we also append a 1 to the end of the vectors because this is
// a convenient way of dealing with the bias term later on.
if (verbose == false)
{
proj_x(i) = ekm.project(x(i));
}
else
{
proj_x(i) = ekm.project(x(i),err);
rs.add(err);
}
}
if (verbose)
{
std::cout << "Mean EKM projection error: " << rs.mean() << std::endl;
std::cout << "Standard deviation of EKM projection error: " << rs.stddev() << std::endl;
}
decision_function<linear_kernel<matrix<scalar_type,0,0,mem_manager_type> > > lin_df;
if (output_loo_values)
lin_df = trainer.train(proj_x,y, loo_values, the_lambda);
else
lin_df = trainer.train(proj_x,y);
// convert the linear decision function into a kernelized one.
decision_function<kernel_type> df;
df = ekm.convert_to_decision_function(lin_df.basis_vectors(0));
df.b = lin_df.b;
// If we used an automatically derived basis then there isn't any point in
// keeping the ekm around. So free its memory.
if (basis_loaded() == false)
{
ekm.clear();
}
return df;
}
/*!
CONVENTION
- if (ekm_stale) then
- kern or basis have changed since the last time
they were loaded into the ekm
- get_lambda() == trainer.get_lambda()
- get_kernel() == kern
- get_max_basis_size() == max_basis_size
- will_use_regression_loss_for_loo_cv() == trainer.will_use_regression_loss_for_loo_cv()
- get_search_lambdas() == trainer.get_search_lambdas()
- basis_loaded() == (basis.size() != 0)
!*/
rr_trainer<linear_kernel<matrix<scalar_type,0,0,mem_manager_type> > > trainer;
bool verbose;
kernel_type kern;
unsigned long max_basis_size;
matrix<sample_type,0,1,mem_manager_type> basis;
mutable empirical_kernel_map<kernel_type> ekm;
mutable bool ekm_stale;
};
}
#endif // DLIB_KRR_TRAInER_Hh_
|