This file is indexed.

/usr/include/dlib/svm/krls.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_KRLs_
#define DLIB_KRLs_

#include <vector>

#include "krls_abstract.h"
#include "../matrix.h"
#include "function.h"
#include "../std_allocator.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <typename kernel_type>
    class krls
    {
        /*!
            This is an implementation of the kernel recursive least squares algorithm described in the paper:
            The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
        !*/

    public:
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;


        explicit krls (
            const kernel_type& kernel_, 
            scalar_type tolerance_ = 0.001,
            unsigned long max_dictionary_size_ = 1000000
        ) : 
            kernel(kernel_), 
            my_tolerance(tolerance_),
            my_max_dictionary_size(max_dictionary_size_)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(tolerance_ >= 0,
                "\tkrls::krls()"
                << "\n\t You have to give a positive tolerance"
                << "\n\t this: " << this
                << "\n\t tolerance: " << tolerance_ 
                );

            clear_dictionary();
        }

        scalar_type tolerance() const
        {
            return my_tolerance;
        }

        unsigned long max_dictionary_size() const
        {
            return my_max_dictionary_size;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel;
        }

        void clear_dictionary ()
        {
            dictionary.clear();
            alpha.clear();

            K_inv.set_size(0,0);
            K.set_size(0,0);
            P.set_size(0,0);
        }

        scalar_type operator() (
            const sample_type& x
        ) const
        {
            scalar_type temp = 0;
            for (unsigned long i = 0; i < alpha.size(); ++i)
                temp += alpha[i]*kern(dictionary[i], x);

            return temp;
        }

        void train (
            const sample_type& x,
            scalar_type y
        )
        {
            const scalar_type kx = kern(x,x);
            if (alpha.size() == 0)
            {
                // just ignore this sample if it is the zero vector (or really close to being zero)
                if (std::abs(kx) > std::numeric_limits<scalar_type>::epsilon())
                {
                    // set initial state since this is the first training example we have seen

                    K_inv.set_size(1,1);
                    K_inv(0,0) = 1/kx;
                    K.set_size(1,1);
                    K(0,0) = kx;

                    alpha.push_back(y/kx);
                    dictionary.push_back(x);
                    P.set_size(1,1);
                    P(0,0) = 1;
                }
            }
            else
            {
                // fill in k
                k.set_size(alpha.size());
                for (long r = 0; r < k.nr(); ++r)
                    k(r) = kern(x,dictionary[r]);

                // compute the error we would have if we approximated the new x sample
                // with the dictionary.  That is, do the ALD test from the KRLS paper.
                a = K_inv*k;
                scalar_type delta = kx - trans(k)*a;

                // if this new vector isn't approximately linearly dependent on the vectors
                // in our dictionary.
                if (delta > my_tolerance)
                {
                    if (dictionary.size() >= my_max_dictionary_size)
                    {
                        // We need to remove one of the old members of the dictionary before
                        // we proceed with adding a new one.  So remove the oldest one. 
                        remove_dictionary_vector(0);

                        // recompute these guys since they were computed with the old
                        // kernel matrix
                        k = remove_row(k,0);
                        a = K_inv*k;
                        delta = kx - trans(k)*a;
                    }

                    // add x to the dictionary
                    dictionary.push_back(x);

                    // update K_inv by computing the new one in the temp matrix (equation 3.14)
                    matrix<scalar_type,0,0,mem_manager_type> temp(K_inv.nr()+1, K_inv.nc()+1);
                    // update the middle part of the matrix
                    set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
                    // update the right column of the matrix
                    set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
                    // update the bottom row of the matrix
                    set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
                    // update the bottom right corner of the matrix
                    temp(K_inv.nr(), K_inv.nc()) = 1/delta;
                    // put temp into K_inv
                    temp.swap(K_inv);




                    // update K (the kernel matrix)
                    temp.set_size(K.nr()+1, K.nc()+1);
                    set_subm(temp, get_rect(K)) = K;
                    // update the right column of the matrix
                    set_subm(temp, 0, K.nr(),K.nr(),1) = k;
                    // update the bottom row of the matrix
                    set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
                    temp(K.nr(), K.nc()) = kx;
                    // put temp into K
                    temp.swap(K);




                    // Now update the P matrix (equation 3.15)
                    temp.set_size(P.nr()+1, P.nc()+1);
                    set_subm(temp, get_rect(P)) = P;
                    // initialize the new sides of P 
                    set_rowm(temp,P.nr()) = 0;
                    set_colm(temp,P.nr()) = 0;
                    temp(P.nr(), P.nc()) = 1;
                    temp.swap(P);

                    // now update the alpha vector (equation 3.16)
                    const scalar_type k_a = (y-trans(k)*mat(alpha))/delta;
                    for (unsigned long i = 0; i < alpha.size(); ++i)
                    {
                        alpha[i] -= a(i)*k_a;
                    }
                    alpha.push_back(k_a);
                }
                else
                {
                    q = P*a/(1+trans(a)*P*a);

                    // update P (equation 3.12)
                    temp_matrix = trans(a)*P;
                    P -= q*temp_matrix;

                    // update the alpha vector (equation 3.13)
                    const scalar_type k_a = y-trans(k)*mat(alpha);
                    for (unsigned long i = 0; i < alpha.size(); ++i)
                    {
                        alpha[i] += (K_inv*q*k_a)(i);
                    }
                }
            }
        }

        void swap (
            krls& item
        )
        {
            exchange(kernel, item.kernel);
            dictionary.swap(item.dictionary);
            alpha.swap(item.alpha);
            K_inv.swap(item.K_inv);
            K.swap(item.K);
            P.swap(item.P);
            exchange(my_tolerance, item.my_tolerance);
            q.swap(item.q);
            a.swap(item.a);
            k.swap(item.k);
            temp_matrix.swap(item.temp_matrix);
            exchange(my_max_dictionary_size, item.my_max_dictionary_size);
        }

        unsigned long dictionary_size (
        ) const { return dictionary.size(); }

        decision_function<kernel_type> get_decision_function (
        ) const
        {
            return decision_function<kernel_type>(
                mat(alpha),
                -sum(mat(alpha))*tau, 
                kernel,
                mat(dictionary)
            );
        }

        friend void serialize(const krls& item, std::ostream& out)
        {
            serialize(item.kernel, out);
            serialize(item.dictionary, out);
            serialize(item.alpha, out);
            serialize(item.K_inv, out);
            serialize(item.K, out);
            serialize(item.P, out);
            serialize(item.my_tolerance, out);
            serialize(item.my_max_dictionary_size, out);
        }

        friend void deserialize(krls& item, std::istream& in)
        {
            deserialize(item.kernel, in);
            deserialize(item.dictionary, in);
            deserialize(item.alpha, in);
            deserialize(item.K_inv, in);
            deserialize(item.K, in);
            deserialize(item.P, in);
            deserialize(item.my_tolerance, in);
            deserialize(item.my_max_dictionary_size, in);
        }

    private:

        inline scalar_type kern (const sample_type& m1, const sample_type& m2) const
        { 
            return kernel(m1,m2) + tau;
        }

        void remove_dictionary_vector (
            long i
        )
        /*!
            requires
                - 0 <= i < dictionary.size()
            ensures
                - #dictionary.size() == dictionary.size() - 1
                - #alpha.size() == alpha.size() - 1
                - updates the K_inv matrix so that it is still a proper inverse of the
                  kernel matrix
                - also removes the necessary row and column from the K matrix
                - uses the this->a variable so after this function runs that variable
                  will contain a different value.  
        !*/
        {
            // remove the dictionary vector 
            dictionary.erase(dictionary.begin()+i);

            // remove the i'th vector from the inverse kernel matrix.  This formula is basically
            // just the reverse of the way K_inv is updated by equation 3.14 during normal training.
            K_inv = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);

            // now compute the updated alpha values to take account that we just removed one of 
            // our dictionary vectors
            a = (K_inv*remove_row(K,i)*mat(alpha));

            // now copy over the new alpha values
            alpha.resize(alpha.size()-1);
            for (unsigned long k = 0; k < alpha.size(); ++k)
            {
                alpha[k] = a(k);
            }

            // update the P matrix as well
            P = removerc(P,i,i);

            // update the K matrix as well
            K = removerc(K,i,i);
        }


        kernel_type kernel;

        typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
        typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
        typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
        typedef std::vector<scalar_type,alloc_scalar_type> alpha_vector_type;

        dictionary_vector_type dictionary;
        alpha_vector_type alpha;

        matrix<scalar_type,0,0,mem_manager_type> K_inv;
        matrix<scalar_type,0,0,mem_manager_type> K;
        matrix<scalar_type,0,0,mem_manager_type> P;

        scalar_type my_tolerance;
        unsigned long my_max_dictionary_size;


        // temp variables here just so we don't have to reconstruct them over and over.  Thus, 
        // they aren't really part of the state of this object.
        matrix<scalar_type,0,1,mem_manager_type> q;
        matrix<scalar_type,0,1,mem_manager_type> a;
        matrix<scalar_type,0,1,mem_manager_type> k;
        matrix<scalar_type,1,0,mem_manager_type> temp_matrix;

        const static scalar_type tau;

    };

    template <typename kernel_type>
    const typename kernel_type::scalar_type krls<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.01);

// ----------------------------------------------------------------------------------------

    template <typename kernel_type>
    void swap(krls<kernel_type>& a, krls<kernel_type>& b)
    { a.swap(b); }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_KRLs_