/usr/include/dlib/svm/kkmeans_abstract.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_KKMEANs_ABSTRACT_
#ifdef DLIB_KKMEANs_ABSTRACT_
#include <cmath>
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
#include "../serialize.h"
#include "kernel_abstract.h"
#include "kcentroid_abstract.h"
#include "../noncopyable.h"
namespace dlib
{
template <
typename kernel_type
>
class kkmeans : public noncopyable
{
/*!
REQUIREMENTS ON kernel_type
is a kernel function object as defined in dlib/svm/kernel_abstract.h
INITIAL VALUE
- number_of_centers() == 1
- get_min_change() == 0.01
WHAT THIS OBJECT REPRESENTS
This is an implementation of a kernelized k-means clustering algorithm.
It performs k-means clustering by using the kcentroid object.
!*/
public:
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
kkmeans (
const kcentroid<kernel_type>& kc_
);
/*!
ensures
- #number_of_centers() == 1
- #get_min_change() == 0.01
- #get_kcentroid(0) == a copy of kc_
!*/
~kkmeans(
);
/*!
ensures
- all resources associated with *this have been released
!*/
void set_kcentroid (
const kcentroid<kernel_type>& kc_
);
/*!
ensures
- for all idx:
- #get_kcentroid(idx) == a copy of kc_
!*/
const kcentroid<kernel_type>& get_kcentroid (
unsigned long i
) const;
/*!
requires
- i < number_of_centers()
ensures
- returns a const reference to the ith kcentroid object contained in
this object. Each kcentroid represents one of the centers found
by the k-means clustering algorithm.
!*/
const kernel_type& get_kernel (
) const;
/*!
ensures
- returns a const reference to the kernel used by this object
!*/
void set_number_of_centers (
unsigned long num
);
/*!
requires
- num > 0
ensures
- #number_of_centers() == num
!*/
unsigned long number_of_centers (
) const;
/*!
ensures
- returns the number of centers used in this instance of the k-means clustering
algorithm.
!*/
template <
typename matrix_type,
typename matrix_type2
>
void train (
const matrix_type& samples,
const matrix_type2& initial_centers,
long max_iter = 1000
);
/*!
requires
- matrix_type and matrix_type2 must either be dlib::matrix objects or convertible to dlib::matrix
via mat()
- matrix_type::type == sample_type (i.e. matrix_type should contain sample_type objects)
- matrix_type2::type == sample_type (i.e. matrix_type2 should contain sample_type objects)
- initial_centers.nc() == 1 (i.e. must be a column vector)
- samples.nc() == 1 (i.e. must be a column vector)
- initial_centers.nr() == number_of_centers()
ensures
- performs k-means clustering of the given set of samples. The initial center points
are taken from the initial_centers argument.
- loops over the data and continues to refine the clustering until either less than
get_min_change() fraction of the data points change clusters or we have done max_iter
iterations over the data.
- After this function finishes you can call the operator() function below
to determine which centroid a given sample is closest to.
!*/
unsigned long operator() (
const sample_type& sample
) const;
/*!
ensures
- returns a number idx such that:
- idx < number_of_centers()
- get_kcentroid(idx) == the centroid that is closest to the given
sample.
!*/
void set_min_change (
scalar_type min_change
);
/*!
requires
- 0 <= min_change < 1
ensures
- #get_min_change() == min_change
!*/
const scalar_type get_min_change (
) const;
/*!
ensures
- returns the minimum fraction of data points that need to change
centers in an iteration of kmeans for the algorithm to keep going.
!*/
void swap (
kkmeans& item
);
/*!
ensures
- swaps *this and item
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename kernel_type
>
void swap(
kkmeans<kernel_type>& a,
kkmeans<kernel_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename kernel_type
>
void serialize (
const kkmeans<kernel_type>& item,
std::ostream& out
);
/*!
provides serialization support for kkmeans objects
!*/
template <
typename kernel_type
>
void deserialize (
kkmeans<kernel_type>& item,
std::istream& in
);
/*!
provides serialization support for kkmeans objects
!*/
// ----------------------------------------------------------------------------------------
template <
typename vector_type1,
typename vector_type2,
typename kernel_type
>
void pick_initial_centers(
long num_centers,
vector_type1& centers,
const vector_type2& samples,
const kernel_type& k,
double percentile = 0.01
);
/*!
requires
- num_centers > 1
- 0 <= percentile < 1
- samples.size() > 1
- vector_type1 == something with an interface compatible with std::vector
- vector_type2 == something with an interface compatible with std::vector
- k(samples[0],samples[0]) must be a valid expression that returns a double
- both centers and samples must be able to contain kernel_type::sample_type
objects
ensures
- finds num_centers candidate cluster centers in the data in the samples
vector. Assumes that k is the kernel that will be used during clustering
to define the space in which clustering occurs.
- The centers are found by looking for points that are far away from other
candidate centers. However, if the data is noisy you probably want to
ignore the farthest way points since they will be outliers. To do this
set percentile to the fraction of outliers you expect the data to contain.
- #centers.size() == num_centers
- #centers == a vector containing the candidate centers found
!*/
// ----------------------------------------------------------------------------------------
template <
typename vector_type1,
typename vector_type2
>
void pick_initial_centers(
long num_centers,
vector_type1& centers,
const vector_type2& samples,
double percentile = 0.01
);
/*!
requires
- num_centers > 1
- 0 <= percentile < 1
- samples.size() > 1
- vector_type1 == something with an interface compatible with std::vector
- vector_type2 == something with an interface compatible with std::vector
- Both centers and samples must be able to contain dlib::matrix based row or
column vectors.
ensures
- performs: pick_initial_centers(num_centers, centers, samples, linear_kernel<sample_type>(), percentile)
(i.e. this function is simply an overload that uses the linear kernel.
!*/
// ----------------------------------------------------------------------------------------
template <
typename array_type,
typename sample_type,
typename alloc
>
void find_clusters_using_kmeans (
const array_type& samples,
std::vector<sample_type, alloc>& centers,
unsigned long max_iter = 1000
);
/*!
requires
- samples.size() > 0
- samples == a bunch of row or column vectors and they all must be of the
same length.
- centers.size() > 0
- array_type == something with an interface compatible with std::vector
and it must contain row or column vectors capable of being stored in
sample_type objects.
- sample_type == a dlib::matrix capable of representing vectors
ensures
- performs regular old linear kmeans clustering on the samples. The clustering
begins with the initial set of centers given as an argument to this function.
When it finishes #centers will contain the resulting centers.
- no more than max_iter iterations will be performed before this function
terminates.
!*/
// ----------------------------------------------------------------------------------------
template <
typename array_type,
typename sample_type,
typename alloc
>
void find_clusters_using_angular_kmeans (
const array_type& samples,
std::vector<sample_type, alloc>& centers,
unsigned long max_iter = 1000
);
/*!
requires
- samples.size() > 0
- samples == a bunch of row or column vectors and they all must be of the
same length.
- centers.size() > 0
- array_type == something with an interface compatible with std::vector
and it must contain row or column vectors capable of being stored in
sample_type objects.
- sample_type == a dlib::matrix capable of representing vectors
ensures
- performs linear kmeans clustering on the samples, except instead of using
Euclidean distance to compare samples to the centers it uses the angle
between a sample and a center (with respect to the origin). So we try to
cluster samples together if they have small angles with respect to each
other. The clustering begins with the initial set of centers given as an
argument to this function. When it finishes #centers will contain the
resulting centers.
- for all valid i:
- length(#centers[i]) == 1
(i.e. the output centers are scaled to be unit vectors since their
magnitude is irrelevant. Moreover, this makes it so you can use
functions like nearest_center() with #centers to find the cluster
assignments.)
- No more than max_iter iterations will be performed before this function
terminates.
!*/
// ----------------------------------------------------------------------------------------
template <
typename array_type,
typename EXP
>
unsigned long nearest_center (
const array_type& centers,
const matrix_exp<EXP>& sample
);
/*!
requires
- centers.size() > 0
- sample.size() > 0
- is_vector(sample) == true
- centers must be an array of vectors such that the following expression is
valid: length_squared(sample - centers[0]). (e.g. centers could be a
std::vector of matrix objects holding column vectors).
ensures
- returns the index that identifies the element of centers that is nearest to
sample. That is, returns a number IDX such that centers[IDX] is the element
of centers that minimizes length(centers[IDX]-sample).
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_KKMEANs_ABSTRACT_
|