/usr/include/dlib/svm/function_abstract.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 | // Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SVm_FUNCTION_ABSTRACT_
#ifdef DLIB_SVm_FUNCTION_ABSTRACT_
#include <cmath>
#include <limits>
#include <sstream>
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
#include "../serialize.h"
#include "../statistics/statistics_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename K
>
struct decision_function
{
/*!
REQUIREMENTS ON K
K must be a kernel function object type as defined at the
top of dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object represents a classification or regression function that was
learned by a kernel based learning algorithm. Therefore, it is a function
object that takes a sample object and returns a scalar value.
THREAD SAFETY
It is always safe to use distinct instances of this object in different
threads. However, when a single instance is shared between threads then
the following rules apply:
It is safe to call operator() on this object from multiple threads so
long as the kernel, K, is also threadsafe. This is because operator()
is a read-only operation. However, any operation that modifies a
decision_function is not threadsafe.
!*/
typedef K kernel_type;
typedef typename K::scalar_type scalar_type;
typedef typename K::scalar_type result_type;
typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type;
typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
typedef matrix<sample_type,0,1,mem_manager_type> sample_vector_type;
scalar_vector_type alpha;
scalar_type b;
K kernel_function;
sample_vector_type basis_vectors;
decision_function (
);
/*!
ensures
- #b == 0
- #alpha.nr() == 0
- #basis_vectors.nr() == 0
!*/
decision_function (
const decision_function& f
);
/*!
ensures
- #*this is a copy of f
!*/
decision_function (
const scalar_vector_type& alpha_,
const scalar_type& b_,
const K& kernel_function_,
const sample_vector_type& basis_vectors_
) : alpha(alpha_), b(b_), kernel_function(kernel_function_), basis_vectors(basis_vectors_) {}
/*!
ensures
- populates the decision function with the given basis vectors, weights(i.e. alphas),
b term, and kernel function.
!*/
result_type operator() (
const sample_type& x
) const
/*!
ensures
- evaluates this sample according to the decision
function contained in this object.
!*/
{
result_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i)
temp += alpha(i) * kernel_function(x,basis_vectors(i));
return temp - b;
}
};
template <
typename K
>
void serialize (
const decision_function<K>& item,
std::ostream& out
);
/*!
provides serialization support for decision_function
!*/
template <
typename K
>
void deserialize (
decision_function<K>& item,
std::istream& in
);
/*!
provides serialization support for decision_function
!*/
// ----------------------------------------------------------------------------------------
template <
typename function_type
>
struct probabilistic_function
{
/*!
REQUIREMENTS ON function_type
- function_type must be a function object with an overloaded
operator() similar to the other function objects defined in
this file. The operator() should return a scalar type such as
double or float.
WHAT THIS OBJECT REPRESENTS
This object represents a binary decision function that returns an
estimate of the probability that a given sample is in the +1 class.
THREAD SAFETY
It is always safe to use distinct instances of this object in different
threads. However, when a single instance is shared between threads then
the following rules apply:
It is safe to call operator() on this object from multiple threads so
long as decision_funct is also threadsafe. This is because operator()
is a read-only operation. However, any operation that modifies a
probabilistic_function is not threadsafe.
!*/
typedef typename function_type::scalar_type scalar_type;
typedef typename function_type::result_type result_type;
typedef typename function_type::sample_type sample_type;
typedef typename function_type::mem_manager_type mem_manager_type;
scalar_type alpha;
scalar_type beta;
function_type decision_funct;
probabilistic_function (
);
/*!
ensures
- #alpha == 0
- #beta == 0
- #decision_funct has its initial value
!*/
probabilistic_function (
const probabilistic_function& f
);
/*!
ensures
- #*this is a copy of f
!*/
probabilistic_function (
const scalar_type a,
const scalar_type b,
const function_type& decision_funct_
) : alpha(a), beta(b), decision_funct(decision_funct_) {}
/*!
ensures
- populates the probabilistic decision function with the given alpha, beta,
and decision function.
!*/
result_type operator() (
const sample_type& x
) const
/*!
ensures
- returns a number P such that:
- 0 <= P <= 1
- P represents the probability that sample x is from
the class +1
!*/
{
// Evaluate the normal decision function
result_type f = decision_funct(x);
// Now basically normalize the output so that it is a properly
// conditioned probability of x being in the +1 class given
// the output of the decision function.
return 1/(1 + std::exp(alpha*f + beta));
}
};
template <
typename function_type
>
void serialize (
const probabilistic_function<function_type>& item,
std::ostream& out
);
/*!
provides serialization support for probabilistic_function
!*/
template <
typename function_type
>
void deserialize (
probabilistic_function<function_type>& item,
std::istream& in
);
/*!
provides serialization support for probabilistic_function
!*/
// ----------------------------------------------------------------------------------------
template <
typename K
>
struct probabilistic_decision_function
{
/*!
REQUIREMENTS ON K
K must be a kernel function object type as defined at the
top of dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object represents a binary decision function that returns an
estimate of the probability that a given sample is in the +1 class.
Note that this object is essentially just a copy of
probabilistic_function but with the template argument
changed from being a function type to a kernel type. Therefore, this
type is just a convenient version of probabilistic_function
for the case where the decision function is a dlib::decision_function<K>.
THREAD SAFETY
It is always safe to use distinct instances of this object in different
threads. However, when a single instance is shared between threads then
the following rules apply:
It is safe to call operator() on this object from multiple threads so
long as the kernel, K, is also threadsafe. This is because operator()
is a read-only operation. However, any operation that modifies a
probabilistic_decision_function is not threadsafe.
!*/
typedef K kernel_type;
typedef typename K::scalar_type scalar_type;
typedef typename K::scalar_type result_type;
typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type;
scalar_type alpha;
scalar_type beta;
decision_function<K> decision_funct;
probabilistic_decision_function (
);
/*!
ensures
- #alpha == 0
- #beta == 0
- #decision_funct has its initial value
!*/
probabilistic_decision_function (
const probabilistic_decision_function& f
);
/*!
ensures
- #*this is a copy of f
!*/
probabilistic_decision_function (
const probabilistic_function<decision_function<K> >& d
);
/*!
ensures
- #*this is a copy of f
!*/
probabilistic_decision_function (
const scalar_type a,
const scalar_type b,
const decision_function<K>& decision_funct_
) : alpha(a), beta(b), decision_funct(decision_funct_) {}
/*!
ensures
- populates the probabilistic decision function with the given alpha, beta,
and decision_function.
!*/
result_type operator() (
const sample_type& x
) const
/*!
ensures
- returns a number P such that:
- 0 <= P <= 1
- P represents the probability that sample x is from
the class +1
!*/
{
// Evaluate the normal decision function
result_type f = decision_funct(x);
// Now basically normalize the output so that it is a properly
// conditioned probability of x being in the +1 class given
// the output of the decision function.
return 1/(1 + std::exp(alpha*f + beta));
}
};
template <
typename K
>
void serialize (
const probabilistic_decision_function<K>& item,
std::ostream& out
);
/*!
provides serialization support for probabilistic_decision_function
!*/
template <
typename K
>
void deserialize (
probabilistic_decision_function<K>& item,
std::istream& in
);
/*!
provides serialization support for probabilistic_decision_function
!*/
// ----------------------------------------------------------------------------------------
template <
typename K
>
class distance_function
{
/*!
REQUIREMENTS ON K
K must be a kernel function object type as defined at the
top of dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object represents a point in kernel induced feature space.
You may use this object to find the distance from the point it
represents to points in input space as well as other points
represented by distance_functions.
Specifically, if O() is the feature mapping associated with
the kernel used by this object. Then this object represents
the point:
sum alpha(i)*O(basis_vectors(i))
I.e. It represents a linear combination of the basis vectors where
the weights of the linear combination are stored in the alpha vector.
THREAD SAFETY
It is always safe to use distinct instances of this object in different
threads. However, when a single instance is shared between threads then
the following rules apply:
It is safe to call the const members of this object from multiple
threads so long as the kernel, K, is also threadsafe. This is because
the const members are purely read-only operations. However, any
operation that modifies a distance_function is not threadsafe.
!*/
public:
typedef K kernel_type;
typedef typename K::scalar_type scalar_type;
typedef typename K::scalar_type result_type;
typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type;
typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
typedef matrix<sample_type,0,1,mem_manager_type> sample_vector_type;
distance_function (
);
/*!
ensures
- #get_squared_norm() == 0
- #get_alpha().size() == 0
- #get_basis_vectors().size() == 0
- #get_kernel() == K() (i.e. the default value of the kernel)
!*/
explicit distance_function (
const kernel_type& kern
);
/*!
ensures
- #get_squared_norm() == 0
- #get_alpha().size() == 0
- #get_basis_vectors().size() == 0
- #get_kernel() == kern
!*/
distance_function (
const kernel_type& kern,
const sample_type& samp
);
/*!
ensures
- This object represents the point in kernel feature space which
corresponds directly to the given sample. In particular this means
that:
- #get_kernel() == kern
- #get_alpha() == a vector of length 1 which contains the value 1
- #get_basis_vectors() == a vector of length 1 which contains samp
!*/
distance_function (
const decision_function<K>& f
);
/*!
ensures
- Every decision_function represents a point in kernel feature space along
with a bias value. This constructor discards the bias value and creates
a distance_function which represents the point associated with the given
decision_function f. In particular, this means:
- #get_alpha() == f.alpha
- #get_kernel() == f.kernel_function
- #get_basis_vectors() == f.basis_vectors
!*/
distance_function (
const distance_function& f
);
/*!
requires
- f is a valid distance_function. In particular, this means that
f.alpha.size() == f.basis_vectors.size()
ensures
- #*this is a copy of f
!*/
distance_function (
const scalar_vector_type& alpha,
const scalar_type& squared_norm,
const K& kernel_function,
const sample_vector_type& basis_vectors
);
/*!
requires
- alpha.size() == basis_vectors.size()
- squared_norm == trans(alpha)*kernel_matrix(kernel_function,basis_vectors)*alpha
(Basically, squared_norm needs to be set properly for this object to make sense.
You should prefer to use the following constructor which computes squared_norm for
you. This version is provided just in case you already know squared_norm and
don't want to spend CPU cycles to recompute it.)
ensures
- populates the distance function with the given basis vectors, weights(i.e. alphas),
squared_norm value, and kernel function. I.e.
- #get_alpha() == alpha
- #get_squared_norm() == squared_norm
- #get_kernel() == kernel_function
- #get_basis_vectors() == basis_vectors
!*/
distance_function (
const scalar_vector_type& alpha,
const K& kernel_function,
const sample_vector_type& basis_vectors
);
/*!
requires
- alpha.size() == basis_vectors.size()
ensures
- populates the distance function with the given basis vectors, weights(i.e. alphas),
and kernel function. The correct b value is computed automatically. I.e.
- #get_alpha() == alpha
- #get_squared_norm() == trans(alpha)*kernel_matrix(kernel_function,basis_vectors)*alpha
(i.e. get_squared_norm() will be automatically set to the correct value)
- #get_kernel() == kernel_function
- #get_basis_vectors() == basis_vectors
!*/
const scalar_vector_type& get_alpha (
) const;
/*!
ensures
- returns the set of weights on each basis vector in this object
!*/
const scalar_type& get_squared_norm (
) const;
/*!
ensures
- returns the squared norm of the point represented by this object. This value is
equal to the following expression:
trans(get_alpha()) * kernel_matrix(get_kernel(),get_basis_vectors()) * get_alpha()
!*/
const K& get_kernel(
) const;
/*!
ensures
- returns the kernel used by this object.
!*/
const sample_vector_type& get_basis_vectors (
) const;
/*!
ensures
- returns the set of basis vectors contained in this object
!*/
result_type operator() (
const sample_type& x
) const;
/*!
ensures
- Let O(x) represent the point x projected into kernel induced feature space.
- let c == sum_over_i get_alpha()(i)*O(get_basis_vectors()(i)) == the point in kernel space that
this object represents. That is, c is the weighted sum of basis vectors.
- Then this object returns the distance between the point O(x) and c in kernel
space.
!*/
result_type operator() (
const distance_function& x
) const;
/*!
requires
- kernel_function == x.kernel_function
ensures
- returns the distance between the points in kernel space represented by *this and x.
!*/
distance_function operator* (
const scalar_type& val
) const;
/*!
ensures
- multiplies the point represented by *this by val and returns the result. In
particular, this function returns a decision_function DF such that:
- DF.get_basis_vectors() == get_basis_vectors()
- DF.get_kernel() == get_kernel()
- DF.get_alpha() == get_alpha() * val
!*/
distance_function operator/ (
const scalar_type& val
) const;
/*!
ensures
- divides the point represented by *this by val and returns the result. In
particular, this function returns a decision_function DF such that:
- DF.get_basis_vectors() == get_basis_vectors()
- DF.get_kernel() == get_kernel()
- DF.get_alpha() == get_alpha() / val
!*/
distance_function operator+ (
const distance_function& rhs
) const;
/*!
requires
- get_kernel() == rhs.get_kernel()
ensures
- returns a distance function DF such that:
- DF represents the sum of the point represented by *this and rhs
- DF.get_basis_vectors().size() == get_basis_vectors().size() + rhs.get_basis_vectors().size()
- DF.get_basis_vectors() contains all the basis vectors in both *this and rhs.
- DF.get_kernel() == get_kernel()
- DF.alpha == join_cols(get_alpha(), rhs.get_alpha())
!*/
distance_function operator- (
const distance_function& rhs
) const;
/*!
requires
- get_kernel() == rhs.get_kernel()
ensures
- returns a distance function DF such that:
- DF represents the difference of the point represented by *this and rhs (i.e. *this - rhs)
- DF.get_basis_vectors().size() == get_basis_vectors().size() + rhs.get_basis_vectors().size()
- DF.get_basis_vectors() contains all the basis vectors in both *this and rhs.
- DF.get_kernel() == get_kernel()
- DF.alpha == join_cols(get_alpha(), -1 * rhs.get_alpha())
!*/
};
template <
typename K
>
distance_function<K> operator* (
const typename K::scalar_type& val,
const distance_function<K>& df
) { return df*val; }
/*!
ensures
- multiplies the point represented by *this by val and returns the result. This
function just allows multiplication syntax of the form val*df.
!*/
template <
typename K
>
void serialize (
const distance_function<K>& item,
std::ostream& out
);
/*!
provides serialization support for distance_function
!*/
template <
typename K
>
void deserialize (
distance_function<K>& item,
std::istream& in
);
/*!
provides serialization support for distance_function
!*/
// ----------------------------------------------------------------------------------------
template <
typename function_type,
typename normalizer_type = vector_normalizer<typename function_type::sample_type>
>
struct normalized_function
{
/*!
REQUIREMENTS ON function_type
- function_type must be a function object with an overloaded
operator() similar to the other function objects defined in
this file.
REQUIREMENTS ON normalizer_type
- normalizer_type must be a function object with an overloaded
operator() that takes a sample_type and returns a sample_type.
WHAT THIS OBJECT REPRESENTS
This object represents a container for another function
object and an instance of a normalizer function.
It automatically normalizes all inputs before passing them
off to the contained function object.
!*/
typedef typename function_type::result_type result_type;
typedef typename function_type::sample_type sample_type;
typedef typename function_type::mem_manager_type mem_manager_type;
normalizer_type normalizer;
function_type function;
normalized_function (
);
/*!
ensures
- the members of this object have their default values
!*/
normalized_function (
const normalized_function& f
);
/*!
ensures
- #*this is a copy of f
!*/
normalized_function (
const vector_normalizer<sample_type>& normalizer_,
const function_type& funct
) : normalizer(normalizer_), function(funct) {}
/*!
ensures
- populates this object with the vector_normalizer and function object
!*/
const std::vector<result_type> get_labels(
) const;
/*!
ensures
- returns function.get_labels()
!*/
unsigned long number_of_classes (
) const;
/*!
ensures
- returns function.number_of_classes()
!*/
result_type operator() (
const sample_type& x
) const
/*!
ensures
- returns function(normalizer(x))
!*/
};
template <
typename function_type,
typename normalizer_type
>
void serialize (
const normalized_function<function_type, normalizer_type>& item,
std::ostream& out
);
/*!
provides serialization support for normalized_function
!*/
template <
typename function_type,
typename normalizer_type
>
void deserialize (
normalized_function<function_type, normalizer_type>& item,
std::istream& in
);
/*!
provides serialization support for normalized_function
!*/
// ----------------------------------------------------------------------------------------
template <
typename K
>
struct projection_function
{
/*!
REQUIREMENTS ON K
K must be a kernel function object type as defined at the
top of dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object represents a function that takes a data sample and projects
it into kernel feature space. The result is a real valued column vector that
represents a point in a kernel feature space.
THREAD SAFETY
It is always safe to use distinct instances of this object in different
threads. However, when a single instance is shared between threads then
the following rules apply:
Instances of this object have a mutable cache which is used by const
member functions. Therefore, it is not safe to use one instance of
this object from multiple threads (unless protected by a mutex).
!*/
typedef K kernel_type;
typedef typename K::scalar_type scalar_type;
typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type;
typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
typedef matrix<scalar_type,0,0,mem_manager_type> scalar_matrix_type;
typedef matrix<sample_type,0,1,mem_manager_type> sample_vector_type;
typedef scalar_vector_type result_type;
scalar_matrix_type weights;
K kernel_function;
sample_vector_type basis_vectors;
projection_function (
);
/*!
ensures
- #weights.size() == 0
- #basis_vectors.size() == 0
!*/
projection_function (
const projection_function& f
);
/*!
ensures
- #*this is a copy of f
!*/
projection_function (
const scalar_matrix_type& weights_,
const K& kernel_function_,
const sample_vector_type& basis_vectors_
) : weights(weights_), kernel_function(kernel_function_), basis_vectors(basis_vectors_) {}
/*!
ensures
- populates the projection function with the given basis vectors, weights,
and kernel function.
!*/
long out_vector_size (
) const;
/*!
ensures
- returns weights.nr()
(i.e. returns the dimensionality of the vectors output by this projection_function.)
!*/
const result_type& operator() (
const sample_type& x
) const
/*!
requires
- weights.nc() == basis_vectors.size()
- out_vector_size() > 0
ensures
- Takes the given x sample and projects it onto part of the kernel feature
space spanned by the basis_vectors. The exact projection arithmetic is
defined below.
!*/
{
// Run the x sample through all the basis functions we have and then
// multiply it by the weights matrix and return the result. Note that
// the temp vectors are here to avoid reallocating their memory every
// time this function is called.
temp1 = kernel_matrix(kernel_function, basis_vectors, x);
temp2 = weights*temp1;
return temp2;
}
private:
mutable result_type temp1, temp2;
};
template <
typename K
>
void serialize (
const projection_function<K>& item,
std::ostream& out
);
/*!
provides serialization support for projection_function
!*/
template <
typename K
>
void deserialize (
projection_function<K>& item,
std::istream& in
);
/*!
provides serialization support for projection_function
!*/
// ----------------------------------------------------------------------------------------
template <
typename K,
typename result_type_ = typename K::scalar_type
>
struct multiclass_linear_decision_function
{
/*!
REQUIREMENTS ON K
K must be either linear_kernel or sparse_linear_kernel.
WHAT THIS OBJECT REPRESENTS
This object represents a multiclass classifier built out of a set of
binary classifiers. Each binary classifier is used to vote for the
correct multiclass label using a one vs. all strategy. Therefore,
if you have N classes then there will be N binary classifiers inside
this object. Additionally, this object is linear in the sense that
each of these binary classifiers is a simple linear plane.
THREAD SAFETY
It is always safe to use distinct instances of this object in different
threads. However, when a single instance is shared between threads then
the following rules apply:
It is safe to call the const member functions of this object from
multiple threads. This is because the const members are purely
read-only operations. However, any operation that modifies a
multiclass_linear_decision_function is not threadsafe.
!*/
typedef result_type_ result_type;
typedef K kernel_type;
typedef typename K::scalar_type scalar_type;
typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type;
typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
typedef matrix<scalar_type,0,0,mem_manager_type> scalar_matrix_type;
scalar_matrix_type weights;
scalar_vector_type b;
std::vector<result_type> labels;
const std::vector<result_type>& get_labels(
) const { return labels; }
/*!
ensures
- returns a vector containing all the labels which can be
predicted by this object.
!*/
unsigned long number_of_classes (
) const;
/*!
ensures
- returns get_labels().size()
(i.e. returns the number of different labels/classes predicted by
this object)
!*/
std::pair<result_type, scalar_type> predict (
const sample_type& x
) const;
/*!
requires
- weights.size() > 0
- weights.nr() == number_of_classes() == b.size()
- if (x is a dense vector, i.e. a dlib::matrix) then
- is_vector(x) == true
- x.size() == weights.nc()
(i.e. it must be legal to multiply weights with x)
ensures
- Returns the predicted label for the x sample and also it's score.
In particular, it returns the following:
std::make_pair(labels[index_of_max(weights*x-b)], max(weights*x-b))
!*/
result_type operator() (
const sample_type& x
) const;
/*!
requires
- weights.size() > 0
- weights.nr() == number_of_classes() == b.size()
- if (x is a dense vector, i.e. a dlib::matrix) then
- is_vector(x) == true
- x.size() == weights.nc()
(i.e. it must be legal to multiply weights with x)
ensures
- Returns the predicted label for the x sample. In particular, it returns
the following:
labels[index_of_max(weights*x-b)]
Or in other words, this function returns predict(x).first
!*/
};
template <
typename K,
typename result_type_
>
void serialize (
const multiclass_linear_decision_function<K,result_type_>& item,
std::ostream& out
);
/*!
provides serialization support for multiclass_linear_decision_function
!*/
template <
typename K,
typename result_type_
>
void deserialize (
multiclass_linear_decision_function<K,result_type_>& item,
std::istream& in
);
/*!
provides serialization support for multiclass_linear_decision_function
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SVm_FUNCTION_ABSTRACT_
|