This file is indexed.

/usr/include/dlib/statistics/lda.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LDA_Hh_
#define DLIB_LDA_Hh_

#include "lda_abstract.h"
#include "../algs.h"
#include <map>
#include "../matrix.h"
#include <vector>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace impl
    {

        inline std::map<unsigned long,unsigned long> make_class_labels(
            const std::vector<unsigned long>& row_labels
        )
        {
            std::map<unsigned long,unsigned long> class_labels;
            for (unsigned long i = 0; i < row_labels.size(); ++i)
            {
                const unsigned long next = class_labels.size();
                if (class_labels.count(row_labels[i]) == 0)
                    class_labels[row_labels[i]] = next;
            }
            return class_labels;
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        matrix<T,0,1> center_matrix (
            matrix<T>& X
        )
        {
            matrix<T,1> mean;
            for (long r = 0; r < X.nr(); ++r)
                mean += rowm(X,r);
            mean /= X.nr();

            for (long r = 0; r < X.nr(); ++r)
                set_rowm(X,r) -= mean;

            return trans(mean);
        }
    }

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    void compute_lda_transform (
        matrix<T>& X,
        matrix<T,0,1>& mean,
        const std::vector<unsigned long>& row_labels,
        unsigned long lda_dims = 500,
        unsigned long extra_pca_dims = 200
    )
    {
        std::map<unsigned long,unsigned long> class_labels = impl::make_class_labels(row_labels);
        // LDA can only give out at most class_labels.size()-1 dimensions so don't try to
        // compute more than that.
        lda_dims = std::min<unsigned long>(lda_dims, class_labels.size()-1);

        // make sure requires clause is not broken
        DLIB_CASSERT(class_labels.size() > 1,
            "\t void compute_lda_transform()"
            << "\n\t You can't call this function if the number of distinct class labels is less than 2."
            );
        DLIB_CASSERT(X.size() != 0 && (long)row_labels.size() == X.nr() && lda_dims != 0,
            "\t void compute_lda_transform()"
            << "\n\t Invalid inputs were given to this function."
            << "\n\t X.size():          " << X.size()
            << "\n\t row_labels.size(): " << row_labels.size()
            << "\n\t lda_dims:          " << lda_dims
            );


        mean = impl::center_matrix(X);
        // Do PCA to reduce dims
        matrix<T> pu,pw,pv;
        svd_fast(X, pu, pw, pv, lda_dims+extra_pca_dims, 4);
        pu.set_size(0,0); // free RAM, we don't need pu.
        X = X*pv;


        matrix<T> class_means(class_labels.size(), X.nc());
        class_means = 0;
        matrix<T,0,1> class_counts(class_labels.size());
        class_counts = 0;

        // First compute the means of each class
        for (unsigned long i = 0; i < row_labels.size(); ++i)
        {
            const unsigned long class_idx = class_labels[row_labels[i]];
            set_rowm(class_means,class_idx) += rowm(X,i);
            class_counts(class_idx)++;
        }
        class_means = inv(diagm(class_counts))*class_means;
        // subtract means from the data
        for (unsigned long i = 0; i < row_labels.size(); ++i)
        {
            const unsigned long class_idx = class_labels[row_labels[i]];
            set_rowm(X,i) -= rowm(class_means,class_idx);
        }

        // Note that we are using the formulas from the paper Using Discriminant
        // Eigenfeatures for Image Retrieval by Swets and Weng.
        matrix<T> Sw = trans(X)*X;
        matrix<T> Sb = trans(class_means)*class_means;
        matrix<T> A, H;
        matrix<T,0,1> W;
        svd3(Sw, A, W, H);
        W = sqrt(W);
        W = reciprocal(lowerbound(W,max(W)*1e-5));
        A = trans(H*diagm(W))*Sb*H*diagm(W);
        matrix<T> v,s,u;
        svd3(A, v, s, u);
        matrix<T> tform = H*diagm(W)*u;
        // pick out only the number of dimensions we are supposed to for the output, unless
        // we should just keep them all, then don't do anything. 
        if ((long)lda_dims <= tform.nc())
        {
            rsort_columns(tform, s);
            tform = colm(tform, range(0, lda_dims-1));
        }

        X = trans(pv*tform);
        mean = X*mean;
    }

// ----------------------------------------------------------------------------------------

    inline std::pair<double,double> equal_error_rate (
        const std::vector<double>& low_vals,
        const std::vector<double>& high_vals 
    )
    {
        std::vector<std::pair<double,int> > temp;
        temp.reserve(low_vals.size()+high_vals.size());
        for (unsigned long i = 0; i < low_vals.size(); ++i)
            temp.push_back(std::make_pair(low_vals[i], -1));
        for (unsigned long i = 0; i < high_vals.size(); ++i)
            temp.push_back(std::make_pair(high_vals[i], +1));

        std::sort(temp.begin(), temp.end());

        if (temp.size() == 0)
            return std::make_pair(0,0);

        double thresh = temp[0].first;

        unsigned long num_low_wrong = low_vals.size();
        unsigned long num_high_wrong = 0;
        double low_error = num_low_wrong/(double)low_vals.size();
        double high_error = num_high_wrong/(double)high_vals.size();
        for (unsigned long i = 0; i < temp.size() && high_error < low_error; ++i)
        {
            thresh = temp[i].first;
            if (temp[i].second > 0)
            {
                num_high_wrong++;
                high_error = num_high_wrong/(double)high_vals.size();
            }
            else
            {
                num_low_wrong--;
                low_error = num_low_wrong/(double)low_vals.size();
            }
        }

        return std::make_pair((low_error+high_error)/2, thresh);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_LDA_Hh_