This file is indexed.

/usr/include/dlib/statistics/cca.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_CCA_hh_
#define DLIB_CCA_hh_

#include "cca_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "../sparse_vector.h"
#include "random_subset_selector.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    matrix<typename T::type,0,1> compute_correlations (
        const matrix_exp<T>& L,
        const matrix_exp<T>& R
    )
    {
        DLIB_ASSERT( L.size() > 0 && R.size() > 0 && L.nr() == R.nr(), 
            "\t matrix compute_correlations()"
            << "\n\t Invalid inputs were given to this function."
            << "\n\t L.size(): " << L.size()
            << "\n\t R.size(): " << R.size()
            << "\n\t L.nr():   " << L.nr()
            << "\n\t R.nr():   " << R.nr()
            );

        typedef typename T::type type;
        matrix<type> A, B, C;
        A = diag(trans(R)*L);
        B = sqrt(diag(trans(L)*L));
        C = sqrt(diag(trans(R)*R));
        A = pointwise_multiply(A , reciprocal(pointwise_multiply(B,C)));
        return A;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type, 
        typename T
        >
    matrix<T,0,1> impl_cca (
        const matrix_type& L,
        const matrix_type& R,
        matrix<T>& Ltrans,
        matrix<T>& Rtrans,
        unsigned long num_correlations,
        unsigned long extra_rank,
        unsigned long q,
        unsigned long num_output_correlations,
        double regularization
    )
    {
        matrix<T> Ul, Vl;
        matrix<T> Ur, Vr;
        matrix<T> U, V;
        matrix<T,0,1> Dr, Dl, D;


        // Note that we add a few more singular vectors in because it helps improve the
        // final results if we run this part with a little higher rank than the final SVD.
        svd_fast(L, Ul, Dl, Vl, num_correlations+extra_rank, q);
        svd_fast(R, Ur, Dr, Vr, num_correlations+extra_rank, q);

        // Zero out singular values that are essentially zero so they don't cause numerical
        // difficulties in the code below.
        const double eps = std::numeric_limits<T>::epsilon()*std::max(max(Dr),max(Dl))*100;
        Dl = round_zeros(Dl+regularization,eps);
        Dr = round_zeros(Dr+regularization,eps);

        // This matrix is really small so we can do a normal full SVD on it.  Note that we
        // also throw away the columns of Ul and Ur corresponding to zero singular values.
        svd3(diagm(Dl>0)*tmp(trans(Ul)*Ur)*diagm(Dr>0), U, D, V);

        // now throw away extra columns of the transformations.  We do this in a way
        // that keeps the directions that have the highest correlations.
        matrix<T,0,1> temp = D;
        rsort_columns(U, temp);
        rsort_columns(V, D);
        U = colm(U, range(0, num_output_correlations-1));
        V = colm(V, range(0, num_output_correlations-1));
        D = rowm(D, range(0, num_output_correlations-1));

        Ltrans = Vl*inv(diagm(Dl))*U;
        Rtrans = Vr*inv(diagm(Dr))*V;

        // Note that the D matrix contains the correlation values for the transformed
        // vectors.  However, when the L and R matrices have rank higher than
        // num_correlations+extra_rank then the values in D become only approximate.
        return D; 
    }

// ----------------------------------------------------------------------------------------

    template <typename T>
    matrix<T,0,1> cca (
        const matrix<T>& L,
        const matrix<T>& R,
        matrix<T>& Ltrans,
        matrix<T>& Rtrans,
        unsigned long num_correlations,
        unsigned long extra_rank = 5,
        unsigned long q = 2,
        double regularization = 0
    )
    {
        DLIB_ASSERT( num_correlations > 0 && L.size() > 0 && R.size() > 0 && L.nr() == R.nr() &&
            regularization >= 0, 
            "\t matrix cca()"
            << "\n\t Invalid inputs were given to this function."
            << "\n\t num_correlations: " << num_correlations 
            << "\n\t regularization:   " << regularization 
            << "\n\t L.size(): " << L.size()
            << "\n\t R.size(): " << R.size()
            << "\n\t L.nr():   " << L.nr()
            << "\n\t R.nr():   " << R.nr()
            );

        using std::min;
        const unsigned long n = min(num_correlations, (unsigned long)min(R.nr(),min(L.nc(), R.nc())));
        return impl_cca(L,R,Ltrans, Rtrans, num_correlations, extra_rank, q, n, regularization); 
    }

// ----------------------------------------------------------------------------------------

    template <typename sparse_vector_type, typename T>
    matrix<T,0,1> cca (
        const std::vector<sparse_vector_type>& L,
        const std::vector<sparse_vector_type>& R,
        matrix<T>& Ltrans,
        matrix<T>& Rtrans,
        unsigned long num_correlations,
        unsigned long extra_rank = 5,
        unsigned long q = 2,
        double regularization = 0
    )
    {
        DLIB_ASSERT( num_correlations > 0 && L.size() == R.size() && 
                     max_index_plus_one(L) > 0 && max_index_plus_one(R) > 0 &&
                     regularization >= 0, 
            "\t matrix cca()"
            << "\n\t Invalid inputs were given to this function."
            << "\n\t num_correlations: " << num_correlations 
            << "\n\t regularization:   " << regularization 
            << "\n\t L.size(): " << L.size()
            << "\n\t R.size(): " << R.size()
            << "\n\t max_index_plus_one(L):   " << max_index_plus_one(L)
            << "\n\t max_index_plus_one(R):   " << max_index_plus_one(R)
            );

        using std::min;
        const unsigned long n = min(max_index_plus_one(L), max_index_plus_one(R));
        const unsigned long num_output_correlations = min(num_correlations, std::min<unsigned long>(R.size(),n));
        return impl_cca(L,R,Ltrans, Rtrans, num_correlations, extra_rank, q, num_output_correlations, regularization); 
    }

// ----------------------------------------------------------------------------------------

    template <typename sparse_vector_type, typename Rand_type, typename T>
    matrix<T,0,1> cca (
        const random_subset_selector<sparse_vector_type,Rand_type>& L,
        const random_subset_selector<sparse_vector_type,Rand_type>& R,
        matrix<T>& Ltrans,
        matrix<T>& Rtrans,
        unsigned long num_correlations,
        unsigned long extra_rank = 5,
        unsigned long q = 2
    )
    {
        return cca(L.to_std_vector(), R.to_std_vector(), Ltrans, Rtrans, num_correlations, extra_rank, q);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_CCA_hh_