This file is indexed.

/usr/include/dlib/optimization/optimization_bobyqa.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
// Copyright (C) 2009 M.J.D. Powell, Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_OPTIMIZATIOn_BOBYQA_Hh_
#define DLIB_OPTIMIZATIOn_BOBYQA_Hh_

/*
    The code in this file is derived from Powell's BOBYQA Fortran code.
    It was created by running f2c on the original Fortran code and then 
    massaging the resulting C code into what you can see below.


    The following paper, published in 2009 by Powell, describes the
    detailed workings of the BOBYQA algorithm.  

        The BOBYQA algorithm for bound constrained optimization 
        without derivatives by M.J.D. Powell
*/

#include <algorithm>
#include <cmath>
#include "../matrix.h"
#include "../smart_pointers.h"
#include "optimization_bobyqa_abstract.h"
#include "optimization.h"

// ----------------------------------------------------------------------------------------

namespace dlib
{

    class bobyqa_failure : public error {
    public: bobyqa_failure(const std::string& s):error(s){}
    };

// ----------------------------------------------------------------------------------------

    class bobyqa_implementation
    {
        typedef long integer;
        typedef double doublereal;

    public:

        template <
            typename funct,
            typename T, 
            typename U
            >
        double find_min (
            const funct& f,
            T& x,
            long npt,
            const U& xl_,
            const U& xu_,
            const double rhobeg,
            const double rhoend,
            const long max_f_evals
        ) const
        {
            const unsigned long n = x.size();
            const unsigned long w_size = (npt+5)*(npt+n)+3*n*(n+5)/2;
            scoped_ptr<doublereal[]> w(new doublereal[w_size]);

            // make these temporary matrices becuse U might be some
            // kind of matrix_exp that doesn't support taking the address
            // of the first element.
            matrix<double,0,1> xl(xl_);
            matrix<double,0,1> xu(xu_);

            
            return bobyqa_ (f,
                            x.size(),
                            npt,
                            &x(0),
                            &xl(0),
                            &xu(0),
                            rhobeg,
                            rhoend,
                            max_f_evals,
                            w.get() );
        }

    private:


        template <typename funct>
        doublereal bobyqa_(
            const funct& calfun,
            const integer n, 
            const integer npt, 
            doublereal *x, 
            const doublereal *xl,
            const doublereal *xu,
            const doublereal rhobeg,
            const doublereal rhoend,
            const integer maxfun,
            doublereal *w
        ) const
        {

            /* System generated locals */
            integer i__1;
            doublereal d__1, d__2;

            /* Local variables */
            integer j, id_, np, iw, igo, ihq, ixb, ixa, ifv, isl, jsl, ipq, ivl, ixn, ixo, ixp, isu, jsu, ndim;
            doublereal temp, zero;
            integer ibmat, izmat;


            /*     This subroutine seeks the least value of a function of many variables, */
            /*     by applying a trust region method that forms quadratic models by */
            /*     interpolation. There is usually some freedom in the interpolation */
            /*     conditions, which is taken up by minimizing the Frobenius norm of */
            /*     the change to the second derivative of the model, beginning with the */
            /*     zero matrix. The values of the variables are constrained by upper and */
            /*     lower bounds. The arguments of the subroutine are as follows. */

            /*     N must be set to the number of variables and must be at least two. */
            /*     NPT is the number of interpolation conditions. Its value must be in */
            /*       the interval [N+2,(N+1)(N+2)/2]. Choices that exceed 2*N+1 are not */
            /*       recommended. */
            /*     Initial values of the variables must be set in X(1),X(2),...,X(N). They */
            /*       will be changed to the values that give the least calculated F. */
            /*     For I=1,2,...,N, XL(I) and XU(I) must provide the lower and upper */
            /*       bounds, respectively, on X(I). The construction of quadratic models */
            /*       requires XL(I) to be strictly less than XU(I) for each I. Further, */
            /*       the contribution to a model from changes to the I-th variable is */
            /*       damaged severely by rounding errors if XU(I)-XL(I) is too small. */
            /*     RHOBEG and RHOEND must be set to the initial and final values of a trust */
            /*       region radius, so both must be positive with RHOEND no greater than */
            /*       RHOBEG. Typically, RHOBEG should be about one tenth of the greatest */
            /*       expected change to a variable, while RHOEND should indicate the */
            /*       accuracy that is required in the final values of the variables. An */
            /*       error return occurs if any of the differences XU(I)-XL(I), I=1,...,N, */
            /*       is less than 2*RHOBEG. */
            /*     MAXFUN must be set to an upper bound on the number of calls of CALFUN. */
            /*     The array W will be used for working space. Its length must be at least */
            /*       (NPT+5)*(NPT+N)+3*N*(N+5)/2. */

            /* Parameter adjustments */
            --w;
            --xu;
            --xl;
            --x;

            /* Function Body */
            np = n + 1;

            /*     Return if the value of NPT is unacceptable. */
            if (npt < n + 2 || npt > (n + 2) * np / 2) {
                throw bobyqa_failure("Return from BOBYQA because NPT is not in the required interval");
                //goto L40;
            }

            /*     Partition the working space array, so that different parts of it can */
            /*     be treated separately during the calculation of BOBYQB. The partition */
            /*     requires the first (NPT+2)*(NPT+N)+3*N*(N+5)/2 elements of W plus the */
            /*     space that is taken by the last array in the argument list of BOBYQB. */

            ndim = npt + n;
            ixb = 1;
            ixp = ixb + n;
            ifv = ixp + n * npt;
            ixo = ifv + npt;
            igo = ixo + n;
            ihq = igo + n;
            ipq = ihq + n * np / 2;
            ibmat = ipq + npt;
            izmat = ibmat + ndim * n;
            isl = izmat + npt * (npt - np);
            isu = isl + n;
            ixn = isu + n;
            ixa = ixn + n;
            id_ = ixa + n;
            ivl = id_ + n;
            iw = ivl + ndim;

            /*     Return if there is insufficient space between the bounds. Modify the */
            /*     initial X if necessary in order to avoid conflicts between the bounds */
            /*     and the construction of the first quadratic model. The lower and upper */
            /*     bounds on moves from the updated X are set now, in the ISL and ISU */
            /*     partitions of W, in order to provide useful and exact information about */
            /*     components of X that become within distance RHOBEG from their bounds. */

            zero = 0.;
            i__1 = n;
            for (j = 1; j <= i__1; ++j) {
                temp = xu[j] - xl[j];
                if (temp < rhobeg + rhobeg) {
                    throw bobyqa_failure("Return from BOBYQA because one of the differences in x_lower and x_upper is less than 2*rho_begin");
                    //goto L40;
                }
                jsl = isl + j - 1;
                jsu = jsl + n;
                w[jsl] = xl[j] - x[j];
                w[jsu] = xu[j] - x[j];
                if (w[jsl] >= -(rhobeg)) {
                    if (w[jsl] >= zero) {
                        x[j] = xl[j];
                        w[jsl] = zero;
                        w[jsu] = temp;
                    } else {
                        x[j] = xl[j] + rhobeg;
                        w[jsl] = -(rhobeg);
                        /* Computing MAX */
                        d__1 = xu[j] - x[j];
                        w[jsu] = std::max(d__1,rhobeg);
                    }
                } else if (w[jsu] <= rhobeg) {
                    if (w[jsu] <= zero) {
                        x[j] = xu[j];
                        w[jsl] = -temp;
                        w[jsu] = zero;
                    } else {
                        x[j] = xu[j] - rhobeg;
                        /* Computing MIN */
                        d__1 = xl[j] - x[j], d__2 = -(rhobeg);
                        w[jsl] = std::min(d__1,d__2);
                        w[jsu] = rhobeg;
                    }
                }
                /* L30: */
            }

            /*     Make the call of BOBYQB. */

            return bobyqb_(calfun, n, npt, &x[1], &xl[1], &xu[1], rhobeg, rhoend, maxfun, &w[
                    ixb], &w[ixp], &w[ifv], &w[ixo], &w[igo], &w[ihq], &w[ipq], &w[
                    ibmat], &w[izmat], ndim, &w[isl], &w[isu], &w[ixn], &w[ixa], &w[
                    id_], &w[ivl], &w[iw]);
            //L40:
            ;
        } /* bobyqa_ */

    // ----------------------------------------------------------------------------------------

        template <typename funct>
        doublereal bobyqb_(
            const funct& calfun,
            const integer n,
            const integer npt,
            doublereal *x,
            const doublereal *xl,
            const doublereal *xu,
            const doublereal rhobeg,
            const doublereal rhoend,
            const integer maxfun,
            doublereal *xbase, 
            doublereal *xpt,
            doublereal *fval,
            doublereal *xopt,
            doublereal *gopt,
            doublereal *hq,
            doublereal *pq,
            doublereal *bmat,
            doublereal *zmat, 
            const integer ndim,
            doublereal *sl,
            doublereal *su, 
            doublereal *xnew, 
            doublereal *xalt,
            doublereal *d__,
            doublereal *vlag, 
            doublereal *w
        ) const
        {
            /* System generated locals */
            integer xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, 
            zmat_offset, i__1, i__2, i__3;
            doublereal d__1, d__2, d__3, d__4;

            /* Local variables */
            doublereal f = 0;
            integer i__, j, k, ih, nf, jj, nh, ip, jp;
            doublereal dx;
            integer np;
            doublereal den = 0, one = 0, ten = 0, dsq = 0, rho = 0, sum = 0, two = 0, diff = 0, half = 0, beta = 0, gisq = 0;
            integer knew = 0;
            doublereal temp, suma, sumb, bsum, fopt;
            integer kopt = 0, nptm;
            doublereal zero, curv;
            integer ksav;
            doublereal gqsq = 0, dist = 0, sumw = 0, sumz = 0, diffa = 0, diffb = 0, diffc = 0, hdiag = 0;
            integer kbase;
            doublereal alpha = 0, delta = 0, adelt = 0, denom = 0, fsave = 0, bdtol = 0, delsq = 0;
            integer nresc, nfsav;
            doublereal ratio = 0, dnorm = 0, vquad = 0, pqold = 0, tenth = 0;
            integer itest;
            doublereal sumpq, scaden;
            doublereal errbig, cauchy, fracsq, biglsq, densav;
            doublereal bdtest;
            doublereal crvmin, frhosq;
            doublereal distsq;
            integer ntrits;
            doublereal xoptsq;



            /*     The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN */
            /*       are identical to the corresponding arguments in SUBROUTINE BOBYQA. */
            /*     XBASE holds a shift of origin that should reduce the contributions */
            /*       from rounding errors to values of the model and Lagrange functions. */
            /*     XPT is a two-dimensional array that holds the coordinates of the */
            /*       interpolation points relative to XBASE. */
            /*     FVAL holds the values of F at the interpolation points. */
            /*     XOPT is set to the displacement from XBASE of the trust region centre. */
            /*     GOPT holds the gradient of the quadratic model at XBASE+XOPT. */
            /*     HQ holds the explicit second derivatives of the quadratic model. */
            /*     PQ contains the parameters of the implicit second derivatives of the */
            /*       quadratic model. */
            /*     BMAT holds the last N columns of H. */
            /*     ZMAT holds the factorization of the leading NPT by NPT submatrix of H, */
            /*       this factorization being ZMAT times ZMAT^T, which provides both the */
            /*       correct rank and positive semi-definiteness. */
            /*     NDIM is the first dimension of BMAT and has the value NPT+N. */
            /*     SL and SU hold the differences XL-XBASE and XU-XBASE, respectively. */
            /*       All the components of every XOPT are going to satisfy the bounds */
            /*       SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when */
            /*       XOPT is on a constraint boundary. */
            /*     XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the */
            /*       vector of variables for the next call of CALFUN. XNEW also satisfies */
            /*       the SL and SU constraints in the way that has just been mentioned. */
            /*     XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW */
            /*       in order to increase the denominator in the updating of UPDATE. */
            /*     D is reserved for a trial step from XOPT, which is usually XNEW-XOPT. */
            /*     VLAG contains the values of the Lagrange functions at a new point X. */
            /*       They are part of a product that requires VLAG to be of length NDIM. */
            /*     W is a one-dimensional array that is used for working space. Its length */
            /*       must be at least 3*NDIM = 3*(NPT+N). */

            /*     Set some constants. */

            /* Parameter adjustments */
            zmat_dim1 = npt;
            zmat_offset = 1 + zmat_dim1;
            zmat -= zmat_offset;
            xpt_dim1 = npt;
            xpt_offset = 1 + xpt_dim1;
            xpt -= xpt_offset;
            --x;
            --xl;
            --xu;
            --xbase;
            --fval;
            --xopt;
            --gopt;
            --hq;
            --pq;
            bmat_dim1 = ndim;
            bmat_offset = 1 + bmat_dim1;
            bmat -= bmat_offset;
            --sl;
            --su;
            --xnew;
            --xalt;
            --d__;
            --vlag;
            --w;

            /* Function Body */
            half = .5;
            one = 1.;
            ten = 10.;
            tenth = .1;
            two = 2.;
            zero = 0.;
            np = n + 1;
            nptm = npt - np;
            nh = n * np / 2;

            /*     The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ, */
            /*     BMAT and ZMAT for the first iteration, with the corresponding values of */
            /*     of NF and KOPT, which are the number of calls of CALFUN so far and the */
            /*     index of the interpolation point at the trust region centre. Then the */
            /*     initial XOPT is set too. The branch to label 720 occurs if MAXFUN is */
            /*     less than NPT. GOPT will be updated if KOPT is different from KBASE. */

            prelim_(calfun, n, npt, &x[1], &xl[1], &xu[1], rhobeg, maxfun, &xbase[1], 
                    &xpt[xpt_offset], &fval[1], &gopt[1], &hq[1], &pq[1], &bmat[bmat_offset], 
                    &zmat[zmat_offset], ndim, &sl[1], &su[1], nf, kopt);
            xoptsq = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                xopt[i__] = xpt[kopt + i__ * xpt_dim1];
                /* L10: */
                /* Computing 2nd power */
                d__1 = xopt[i__];
                xoptsq += d__1 * d__1;
            }
            fsave = fval[1];
            if (nf < npt) {
                throw bobyqa_failure("Return from BOBYQA because the objective function has been called max_f_evals times.");
                //goto L720;
            }
            kbase = 1;

            /*     Complete the settings that are required for the iterative procedure. */

            rho = rhobeg;
            delta = rho;
            nresc = nf;
            ntrits = 0;
            diffa = zero;
            diffb = zero;
            itest = 0;
            nfsav = nf;

            /*     Update GOPT if necessary before the first iteration and after each */
            /*     call of RESCUE that makes a call of CALFUN. */

L20:
            if (kopt != kbase) {
                ih = 0;
                i__1 = n;
                for (j = 1; j <= i__1; ++j) {
                    i__2 = j;
                    for (i__ = 1; i__ <= i__2; ++i__) {
                        ++ih;
                        if (i__ < j) {
                            gopt[j] += hq[ih] * xopt[i__];
                        }
                        /* L30: */
                        gopt[i__] += hq[ih] * xopt[j];
                    }
                }
                if (nf > npt) {
                    i__2 = npt;
                    for (k = 1; k <= i__2; ++k) {
                        temp = zero;
                        i__1 = n;
                        for (j = 1; j <= i__1; ++j) {
                            /* L40: */
                            temp += xpt[k + j * xpt_dim1] * xopt[j];
                        }
                        temp = pq[k] * temp;
                        i__1 = n;
                        for (i__ = 1; i__ <= i__1; ++i__) {
                            /* L50: */
                            gopt[i__] += temp * xpt[k + i__ * xpt_dim1];
                        }
                    }
                }
            }

            /*     Generate the next point in the trust region that provides a small value */
            /*     of the quadratic model subject to the constraints on the variables. */
            /*     The integer NTRITS is set to the number "trust region" iterations that */
            /*     have occurred since the last "alternative" iteration. If the length */
            /*     of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to */
            /*     label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW. */

L60:
            trsbox_(n, npt, &xpt[xpt_offset], &xopt[1], &gopt[1], &hq[1], &pq[1], &sl[1], 
                    &su[1], delta, &xnew[1], &d__[1], &w[1], &w[np], &w[np + n],
                    &w[np + (n << 1)], &w[np + n * 3], &dsq, &crvmin);
            /* Computing MIN */
            d__1 = delta, d__2 = std::sqrt(dsq);
            dnorm = std::min(d__1,d__2);
            if (dnorm < half * rho) {
                ntrits = -1;
                /* Computing 2nd power */
                d__1 = ten * rho;
                distsq = d__1 * d__1;
                if (nf <= nfsav + 2) {
                    goto L650;
                }

                /*     The following choice between labels 650 and 680 depends on whether or */
                /*     not our work with the current RHO seems to be complete. Either RHO is */
                /*     decreased or termination occurs if the errors in the quadratic model at */
                /*     the last three interpolation points compare favourably with predictions */
                /*     of likely improvements to the model within distance HALF*RHO of XOPT. */

                /* Computing MAX */
                d__1 = std::max(diffa,diffb);
                errbig = std::max(d__1,diffc);
                frhosq = rho * .125 * rho;
                if (crvmin > zero && errbig > frhosq * crvmin) {
                    goto L650;
                }
                bdtol = errbig / rho;
                i__1 = n;
                for (j = 1; j <= i__1; ++j) {
                    bdtest = bdtol;
                    if (xnew[j] == sl[j]) {
                        bdtest = w[j];
                    }
                    if (xnew[j] == su[j]) {
                        bdtest = -w[j];
                    }
                    if (bdtest < bdtol) {
                        curv = hq[(j + j * j) / 2];
                        i__2 = npt;
                        for (k = 1; k <= i__2; ++k) {
                            /* L70: */
                            /* Computing 2nd power */
                            d__1 = xpt[k + j * xpt_dim1];
                            curv += pq[k] * (d__1 * d__1);
                        }
                        bdtest += half * curv * rho;
                        if (bdtest < bdtol) {
                            goto L650;
                        }
                    }
                    /* L80: */
                }
                goto L680;
            }
            ++ntrits;

            /*     Severe cancellation is likely to occur if XOPT is too far from XBASE. */
            /*     If the following test holds, then XBASE is shifted so that XOPT becomes */
            /*     zero. The appropriate changes are made to BMAT and to the second */
            /*     derivatives of the current model, beginning with the changes to BMAT */
            /*     that do not depend on ZMAT. VLAG is used temporarily for working space. */

L90:
            if (dsq <= xoptsq * .001) {
                fracsq = xoptsq * .25;
                sumpq = zero;
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    sumpq += pq[k];
                    sum = -half * xoptsq;
                    i__2 = n;
                    for (i__ = 1; i__ <= i__2; ++i__) {
                        /* L100: */
                        sum += xpt[k + i__ * xpt_dim1] * xopt[i__];
                    }
                    w[npt + k] = sum;
                    temp = fracsq - half * sum;
                    i__2 = n;
                    for (i__ = 1; i__ <= i__2; ++i__) {
                        w[i__] = bmat[k + i__ * bmat_dim1];
                        vlag[i__] = sum * xpt[k + i__ * xpt_dim1] + temp * xopt[i__];
                        ip = npt + i__;
                        i__3 = i__;
                        for (j = 1; j <= i__3; ++j) {
                            /* L110: */
                            bmat[ip + j * bmat_dim1] = bmat[ip + j * bmat_dim1] + w[
                                i__] * vlag[j] + vlag[i__] * w[j];
                        }
                    }
                }

                /*     Then the revisions of BMAT that depend on ZMAT are calculated. */

                i__3 = nptm;
                for (jj = 1; jj <= i__3; ++jj) {
                    sumz = zero;
                    sumw = zero;
                    i__2 = npt;
                    for (k = 1; k <= i__2; ++k) {
                        sumz += zmat[k + jj * zmat_dim1];
                        vlag[k] = w[npt + k] * zmat[k + jj * zmat_dim1];
                        /* L120: */
                        sumw += vlag[k];
                    }
                    i__2 = n;
                    for (j = 1; j <= i__2; ++j) {
                        sum = (fracsq * sumz - half * sumw) * xopt[j];
                        i__1 = npt;
                        for (k = 1; k <= i__1; ++k) {
                            /* L130: */
                            sum += vlag[k] * xpt[k + j * xpt_dim1];
                        }
                        w[j] = sum;
                        i__1 = npt;
                        for (k = 1; k <= i__1; ++k) {
                            /* L140: */
                            bmat[k + j * bmat_dim1] += sum * zmat[k + jj * zmat_dim1];
                        }
                    }
                    i__1 = n;
                    for (i__ = 1; i__ <= i__1; ++i__) {
                        ip = i__ + npt;
                        temp = w[i__];
                        i__2 = i__;
                        for (j = 1; j <= i__2; ++j) {
                            /* L150: */
                            bmat[ip + j * bmat_dim1] += temp * w[j];
                        }
                    }
                }

                /*     The following instructions complete the shift, including the changes */
                /*     to the second derivative parameters of the quadratic model. */

                ih = 0;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    w[j] = -half * sumpq * xopt[j];
                    i__1 = npt;
                    for (k = 1; k <= i__1; ++k) {
                        w[j] += pq[k] * xpt[k + j * xpt_dim1];
                        /* L160: */
                        xpt[k + j * xpt_dim1] -= xopt[j];
                    }
                    i__1 = j;
                    for (i__ = 1; i__ <= i__1; ++i__) {
                        ++ih;
                        hq[ih] = hq[ih] + w[i__] * xopt[j] + xopt[i__] * w[j];
                        /* L170: */
                        bmat[npt + i__ + j * bmat_dim1] = bmat[npt + j + i__ * 
                            bmat_dim1];
                    }
                }
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    xbase[i__] += xopt[i__];
                    xnew[i__] -= xopt[i__];
                    sl[i__] -= xopt[i__];
                    su[i__] -= xopt[i__];
                    /* L180: */
                    xopt[i__] = zero;
                }
                xoptsq = zero;
            }
            if (ntrits == 0) {
                goto L210;
            }
            goto L230;

            /*     XBASE is also moved to XOPT by a call of RESCUE. This calculation is */
            /*     more expensive than the previous shift, because new matrices BMAT and */
            /*     ZMAT are generated from scratch, which may include the replacement of */
            /*     interpolation points whose positions seem to be causing near linear */
            /*     dependence in the interpolation conditions. Therefore RESCUE is called */
            /*     only if rounding errors have reduced by at least a factor of two the */
            /*     denominator of the formula for updating the H matrix. It provides a */
            /*     useful safeguard, but is not invoked in most applications of BOBYQA. */

L190:
            nfsav = nf;
            kbase = kopt;
            rescue_(calfun, n, npt, &xl[1], &xu[1], maxfun, &xbase[1], &xpt[
                    xpt_offset], &fval[1], &xopt[1], &gopt[1], &hq[1], &pq[1], &bmat[
                    bmat_offset], &zmat[zmat_offset], ndim, &sl[1], &su[1], nf, delta, 
                    kopt, &vlag[1], &w[1], &w[n + np], &w[ndim + np]);

            /*     XOPT is updated now in case the branch below to label 720 is taken. */
            /*     Any updating of GOPT occurs after the branch below to label 20, which */
            /*     leads to a trust region iteration as does the branch to label 60. */

            xoptsq = zero;
            if (kopt != kbase) {
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    xopt[i__] = xpt[kopt + i__ * xpt_dim1];
                    /* L200: */
                    /* Computing 2nd power */
                    d__1 = xopt[i__];
                    xoptsq += d__1 * d__1;
                }
            }
            if (nf < 0) {
                nf = maxfun;
                throw bobyqa_failure("Return from BOBYQA because the objective function has been called max_f_evals times.");
                //goto L720;
            }
            nresc = nf;
            if (nfsav < nf) {
                nfsav = nf;
                goto L20;
            }
            if (ntrits > 0) {
                goto L60;
            }

            /*     Pick two alternative vectors of variables, relative to XBASE, that */
            /*     are suitable as new positions of the KNEW-th interpolation point. */
            /*     Firstly, XNEW is set to the point on a line through XOPT and another */
            /*     interpolation point that minimizes the predicted value of the next */
            /*     denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL */
            /*     and SU bounds. Secondly, XALT is set to the best feasible point on */
            /*     a constrained version of the Cauchy step of the KNEW-th Lagrange */
            /*     function, the corresponding value of the square of this function */
            /*     being returned in CAUCHY. The choice between these alternatives is */
            /*     going to be made when the denominator is calculated. */

L210:
            altmov_(n, npt, &xpt[xpt_offset], &xopt[1], &bmat[bmat_offset], &zmat[zmat_offset], 
                    ndim, &sl[1], &su[1], kopt, knew, adelt, &xnew[1], 
                    &xalt[1], alpha, cauchy, &w[1], &w[np], &w[ndim + 1]);
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                /* L220: */
                d__[i__] = xnew[i__] - xopt[i__];
            }

            /*     Calculate VLAG and BETA for the current choice of D. The scalar */
            /*     product of D with XPT(K,.) is going to be held in W(NPT+K) for */
            /*     use when VQUAD is calculated. */

L230:
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                suma = zero;
                sumb = zero;
                sum = zero;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    suma += xpt[k + j * xpt_dim1] * d__[j];
                    sumb += xpt[k + j * xpt_dim1] * xopt[j];
                    /* L240: */
                    sum += bmat[k + j * bmat_dim1] * d__[j];
                }
                w[k] = suma * (half * suma + sumb);
                vlag[k] = sum;
                /* L250: */
                w[npt + k] = suma;
            }
            beta = zero;
            i__1 = nptm;
            for (jj = 1; jj <= i__1; ++jj) {
                sum = zero;
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    /* L260: */
                    sum += zmat[k + jj * zmat_dim1] * w[k];
                }
                beta -= sum * sum;
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    /* L270: */
                    vlag[k] += sum * zmat[k + jj * zmat_dim1];
                }
            }
            dsq = zero;
            bsum = zero;
            dx = zero;
            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                /* Computing 2nd power */
                d__1 = d__[j];
                dsq += d__1 * d__1;
                sum = zero;
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    /* L280: */
                    sum += w[k] * bmat[k + j * bmat_dim1];
                }
                bsum += sum * d__[j];
                jp = npt + j;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    /* L290: */
                    sum += bmat[jp + i__ * bmat_dim1] * d__[i__];
                }
                vlag[jp] = sum;
                bsum += sum * d__[j];
                /* L300: */
                dx += d__[j] * xopt[j];
            }
            beta = dx * dx + dsq * (xoptsq + dx + dx + half * dsq) + beta - bsum;
            vlag[kopt] += one;

            /*     If NTRITS is zero, the denominator may be increased by replacing */
            /*     the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if */
            /*     rounding errors have damaged the chosen denominator. */

            if (ntrits == 0) {
                /* Computing 2nd power */
                d__1 = vlag[knew];
                denom = d__1 * d__1 + alpha * beta;
                if (denom < cauchy && cauchy > zero) {
                    i__2 = n;
                    for (i__ = 1; i__ <= i__2; ++i__) {
                        xnew[i__] = xalt[i__];
                        /* L310: */
                        d__[i__] = xnew[i__] - xopt[i__];
                    }
                    cauchy = zero;
                    goto L230;
                }
                /* Computing 2nd power */
                d__1 = vlag[knew];
                if (denom <= half * (d__1 * d__1)) {
                    if (nf > nresc) {
                        goto L190;
                    }
                    throw bobyqa_failure("Return from BOBYQA because of much cancellation in a denominator.");
                    //goto L720;
                }

                /*     Alternatively, if NTRITS is positive, then set KNEW to the index of */
                /*     the next interpolation point to be deleted to make room for a trust */
                /*     region step. Again RESCUE may be called if rounding errors have damaged */
                /*     the chosen denominator, which is the reason for attempting to select */
                /*     KNEW before calculating the next value of the objective function. */

            } else {
                delsq = delta * delta;
                scaden = zero;
                biglsq = zero;
                knew = 0;
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    if (k == kopt) {
                        goto L350;
                    }
                    hdiag = zero;
                    i__1 = nptm;
                    for (jj = 1; jj <= i__1; ++jj) {
                        /* L330: */
                        /* Computing 2nd power */
                        d__1 = zmat[k + jj * zmat_dim1];
                        hdiag += d__1 * d__1;
                    }
                    /* Computing 2nd power */
                    d__1 = vlag[k];
                    den = beta * hdiag + d__1 * d__1;
                    distsq = zero;
                    i__1 = n;
                    for (j = 1; j <= i__1; ++j) {
                        /* L340: */
                        /* Computing 2nd power */
                        d__1 = xpt[k + j * xpt_dim1] - xopt[j];
                        distsq += d__1 * d__1;
                    }
                    /* Computing MAX */
                    /* Computing 2nd power */
                    d__3 = distsq / delsq;
                    d__1 = one, d__2 = d__3 * d__3;
                    temp = std::max(d__1,d__2);
                    if (temp * den > scaden) {
                        scaden = temp * den;
                        knew = k;
                        denom = den;
                    }
                    /* Computing MAX */
                    /* Computing 2nd power */
                    d__3 = vlag[k];
                    d__1 = biglsq, d__2 = temp * (d__3 * d__3);
                    biglsq = std::max(d__1,d__2);
L350:
                    ;
                }
                if (scaden <= half * biglsq) {
                    if (nf > nresc) {
                        goto L190;
                    }
                    throw bobyqa_failure("Return from BOBYQA because of much cancellation in a denominator.");
                    //goto L720;
                }
            }

            /*     Put the variables for the next calculation of the objective function */
            /*       in XNEW, with any adjustments for the bounds. */


            /*     Calculate the value of the objective function at XBASE+XNEW, unless */
            /*       the limit on the number of calculations of F has been reached. */

L360:
            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__) {
                /* Computing MIN */
                /* Computing MAX */
                d__3 = xl[i__], d__4 = xbase[i__] + xnew[i__];
                d__1 = std::max(d__3,d__4), d__2 = xu[i__];
                x[i__] = std::min(d__1,d__2);
                if (xnew[i__] == sl[i__]) {
                    x[i__] = xl[i__];
                }
                if (xnew[i__] == su[i__]) {
                    x[i__] = xu[i__];
                }
                /* L380: */
            }
            if (nf >= maxfun) {
                throw bobyqa_failure("Return from BOBYQA because the objective function has been called max_f_evals times.");
                //goto L720;
            }
            ++nf;
            f = calfun(mat(&x[1], n));
            if (ntrits == -1) {
                fsave = f;
                goto L720;
            }

            /*     Use the quadratic model to predict the change in F due to the step D, */
            /*       and set DIFF to the error of this prediction. */

            fopt = fval[kopt];
            vquad = zero;
            ih = 0;
            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                vquad += d__[j] * gopt[j];
                i__1 = j;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    ++ih;
                    temp = d__[i__] * d__[j];
                    if (i__ == j) {
                        temp = half * temp;
                    }
                    /* L410: */
                    vquad += hq[ih] * temp;
                }
            }
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                /* L420: */
                /* Computing 2nd power */
                d__1 = w[npt + k];
                vquad += half * pq[k] * (d__1 * d__1);
            }
            diff = f - fopt - vquad;
            diffc = diffb;
            diffb = diffa;
            diffa = std::abs(diff);
            if (dnorm > rho) {
                nfsav = nf;
            }

            /*     Pick the next value of DELTA after a trust region step. */

            if (ntrits > 0) {
                if (vquad >= zero) {
                    throw bobyqa_failure("Return from BOBYQA because a trust region step has failed to reduce Q.");
                    //goto L720;
                }
                ratio = (f - fopt) / vquad;
                if (ratio <= tenth) {
                    /* Computing MIN */
                    d__1 = half * delta;
                    delta = std::min(d__1,dnorm);
                } else if (ratio <= .7) {
                    /* Computing MAX */
                    d__1 = half * delta;
                    delta = std::max(d__1,dnorm);
                } else {
                    /* Computing MAX */
                    d__1 = half * delta, d__2 = dnorm + dnorm;
                    delta = std::max(d__1,d__2);
                }
                if (delta <= rho * 1.5) {
                    delta = rho;
                }

                /*     Recalculate KNEW and DENOM if the new F is less than FOPT. */

                if (f < fopt) {
                    ksav = knew;
                    densav = denom;
                    delsq = delta * delta;
                    scaden = zero;
                    biglsq = zero;
                    knew = 0;
                    i__1 = npt;
                    for (k = 1; k <= i__1; ++k) {
                        hdiag = zero;
                        i__2 = nptm;
                        for (jj = 1; jj <= i__2; ++jj) {
                            /* L440: */
                            /* Computing 2nd power */
                            d__1 = zmat[k + jj * zmat_dim1];
                            hdiag += d__1 * d__1;
                        }
                        /* Computing 2nd power */
                        d__1 = vlag[k];
                        den = beta * hdiag + d__1 * d__1;
                        distsq = zero;
                        i__2 = n;
                        for (j = 1; j <= i__2; ++j) {
                            /* L450: */
                            /* Computing 2nd power */
                            d__1 = xpt[k + j * xpt_dim1] - xnew[j];
                            distsq += d__1 * d__1;
                        }
                        /* Computing MAX */
                        /* Computing 2nd power */
                        d__3 = distsq / delsq;
                        d__1 = one, d__2 = d__3 * d__3;
                        temp = std::max(d__1,d__2);
                        if (temp * den > scaden) {
                            scaden = temp * den;
                            knew = k;
                            denom = den;
                        }
                        /* L460: */
                        /* Computing MAX */
                        /* Computing 2nd power */
                        d__3 = vlag[k];
                        d__1 = biglsq, d__2 = temp * (d__3 * d__3);
                        biglsq = std::max(d__1,d__2);
                    }
                    if (scaden <= half * biglsq) {
                        knew = ksav;
                        denom = densav;
                    }
                }
            }

            /*     Update BMAT and ZMAT, so that the KNEW-th interpolation point can be */
            /*     moved. Also update the second derivative terms of the model. */

            update_(n, npt, &bmat[bmat_offset], &zmat[zmat_offset], ndim, &vlag[1], 
                    beta, denom, knew, &w[1]);
            ih = 0;
            pqold = pq[knew];
            pq[knew] = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                temp = pqold * xpt[knew + i__ * xpt_dim1];
                i__2 = i__;
                for (j = 1; j <= i__2; ++j) {
                    ++ih;
                    /* L470: */
                    hq[ih] += temp * xpt[knew + j * xpt_dim1];
                }
            }
            i__2 = nptm;
            for (jj = 1; jj <= i__2; ++jj) {
                temp = diff * zmat[knew + jj * zmat_dim1];
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    /* L480: */
                    pq[k] += temp * zmat[k + jj * zmat_dim1];
                }
            }

            /*     Include the new interpolation point, and make the changes to GOPT at */
            /*     the old XOPT that are caused by the updating of the quadratic model. */

            fval[knew] = f;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                xpt[knew + i__ * xpt_dim1] = xnew[i__];
                /* L490: */
                w[i__] = bmat[knew + i__ * bmat_dim1];
            }
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                suma = zero;
                i__2 = nptm;
                for (jj = 1; jj <= i__2; ++jj) {
                    /* L500: */
                    suma += zmat[knew + jj * zmat_dim1] * zmat[k + jj * zmat_dim1];
                }
                sumb = zero;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    /* L510: */
                    sumb += xpt[k + j * xpt_dim1] * xopt[j];
                }
                temp = suma * sumb;
                i__2 = n;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    /* L520: */
                    w[i__] += temp * xpt[k + i__ * xpt_dim1];
                }
            }
            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__) {
                /* L530: */
                gopt[i__] += diff * w[i__];
            }

            /*     Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT. */

            if (f < fopt) {
                kopt = knew;
                xoptsq = zero;
                ih = 0;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    xopt[j] = xnew[j];
                    /* Computing 2nd power */
                    d__1 = xopt[j];
                    xoptsq += d__1 * d__1;
                    i__1 = j;
                    for (i__ = 1; i__ <= i__1; ++i__) {
                        ++ih;
                        if (i__ < j) {
                            gopt[j] += hq[ih] * d__[i__];
                        }
                        /* L540: */
                        gopt[i__] += hq[ih] * d__[j];
                    }
                }
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    temp = zero;
                    i__2 = n;
                    for (j = 1; j <= i__2; ++j) {
                        /* L550: */
                        temp += xpt[k + j * xpt_dim1] * d__[j];
                    }
                    temp = pq[k] * temp;
                    i__2 = n;
                    for (i__ = 1; i__ <= i__2; ++i__) {
                        /* L560: */
                        gopt[i__] += temp * xpt[k + i__ * xpt_dim1];
                    }
                }
            }

            /*     Calculate the parameters of the least Frobenius norm interpolant to */
            /*     the current data, the gradient of this interpolant at XOPT being put */
            /*     into VLAG(NPT+I), I=1,2,...,N. */

            if (ntrits > 0) {
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    vlag[k] = fval[k] - fval[kopt];
                    /* L570: */
                    w[k] = zero;
                }
                i__2 = nptm;
                for (j = 1; j <= i__2; ++j) {
                    sum = zero;
                    i__1 = npt;
                    for (k = 1; k <= i__1; ++k) {
                        /* L580: */
                        sum += zmat[k + j * zmat_dim1] * vlag[k];
                    }
                    i__1 = npt;
                    for (k = 1; k <= i__1; ++k) {
                        /* L590: */
                        w[k] += sum * zmat[k + j * zmat_dim1];
                    }
                }
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    sum = zero;
                    i__2 = n;
                    for (j = 1; j <= i__2; ++j) {
                        /* L600: */
                        sum += xpt[k + j * xpt_dim1] * xopt[j];
                    }
                    w[k + npt] = w[k];
                    /* L610: */
                    w[k] = sum * w[k];
                }
                gqsq = zero;
                gisq = zero;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    sum = zero;
                    i__2 = npt;
                    for (k = 1; k <= i__2; ++k) {
                        /* L620: */
                        sum = sum + bmat[k + i__ * bmat_dim1] * vlag[k] + xpt[k + i__ 
                            * xpt_dim1] * w[k];
                    }
                    if (xopt[i__] == sl[i__]) {
                        /* Computing MIN */
                        d__2 = zero, d__3 = gopt[i__];
                        /* Computing 2nd power */
                        d__1 = std::min(d__2,d__3);
                        gqsq += d__1 * d__1;
                        /* Computing 2nd power */
                        d__1 = std::min(zero,sum);
                        gisq += d__1 * d__1;
                    } else if (xopt[i__] == su[i__]) {
                        /* Computing MAX */
                        d__2 = zero, d__3 = gopt[i__];
                        /* Computing 2nd power */
                        d__1 = std::max(d__2,d__3);
                        gqsq += d__1 * d__1;
                        /* Computing 2nd power */
                        d__1 = std::max(zero,sum);
                        gisq += d__1 * d__1;
                    } else {
                        /* Computing 2nd power */
                        d__1 = gopt[i__];
                        gqsq += d__1 * d__1;
                        gisq += sum * sum;
                    }
                    /* L630: */
                    vlag[npt + i__] = sum;
                }

                /*     Test whether to replace the new quadratic model by the least Frobenius */
                /*     norm interpolant, making the replacement if the test is satisfied. */

                ++itest;
                if (gqsq < ten * gisq) {
                    itest = 0;
                }
                if (itest >= 3) {
                    i__1 = std::max(npt,nh);
                    for (i__ = 1; i__ <= i__1; ++i__) {
                        if (i__ <= n) {
                            gopt[i__] = vlag[npt + i__];
                        }
                        if (i__ <= npt) {
                            pq[i__] = w[npt + i__];
                        }
                        if (i__ <= nh) {
                            hq[i__] = zero;
                        }
                        itest = 0;
                        /* L640: */
                    }
                }
            }

            /*     If a trust region step has provided a sufficient decrease in F, then */
            /*     branch for another trust region calculation. The case NTRITS=0 occurs */
            /*     when the new interpolation point was reached by an alternative step. */

            if (ntrits == 0) {
                goto L60;
            }
            if (f <= fopt + tenth * vquad) {
                goto L60;
            }

            /*     Alternatively, find out if the interpolation points are close enough */
            /*       to the best point so far. */

            /* Computing MAX */
            /* Computing 2nd power */
            d__3 = two * delta;
            /* Computing 2nd power */
            d__4 = ten * rho;
            d__1 = d__3 * d__3, d__2 = d__4 * d__4;
            distsq = std::max(d__1,d__2);
L650:
            knew = 0;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                sum = zero;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    /* L660: */
                    /* Computing 2nd power */
                    d__1 = xpt[k + j * xpt_dim1] - xopt[j];
                    sum += d__1 * d__1;
                }
                if (sum > distsq) {
                    knew = k;
                    distsq = sum;
                }
                /* L670: */
            }

            /*     If KNEW is positive, then ALTMOV finds alternative new positions for */
            /*     the KNEW-th interpolation point within distance ADELT of XOPT. It is */
            /*     reached via label 90. Otherwise, there is a branch to label 60 for */
            /*     another trust region iteration, unless the calculations with the */
            /*     current RHO are complete. */

            if (knew > 0) {
                dist = std::sqrt(distsq);
                if (ntrits == -1) {
                    /* Computing MIN */
                    d__1 = tenth * delta, d__2 = half * dist;
                    delta = std::min(d__1,d__2);
                    if (delta <= rho * 1.5) {
                        delta = rho;
                    }
                }
                ntrits = 0;
                /* Computing MAX */
                /* Computing MIN */
                d__2 = tenth * dist;
                d__1 = std::min(d__2,delta);
                adelt = std::max(d__1,rho);
                dsq = adelt * adelt;
                goto L90;
            }
            if (ntrits == -1) {
                goto L680;
            }
            if (ratio > zero) {
                goto L60;
            }
            if (std::max(delta,dnorm) > rho) {
                goto L60;
            }

            /*     The calculations with the current value of RHO are complete. Pick the */
            /*       next values of RHO and DELTA. */

L680:
            if (rho > rhoend) {
                delta = half * rho;
                ratio = rho / rhoend;
                if (ratio <= 16.) {
                    rho = rhoend;
                } else if (ratio <= 250.) {
                    rho = std::sqrt(ratio) * rhoend;
                } else {
                    rho = tenth * rho;
                }
                delta = std::max(delta,rho);
                ntrits = 0;
                nfsav = nf;
                goto L60;
            }

            /*     Return from the calculation, after another Newton-Raphson step, if */
            /*       it is too short to have been tried before. */

            if (ntrits == -1) {
                goto L360;
            }
L720:
            if (fval[kopt] <= fsave) {
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    /* Computing MIN */
                    /* Computing MAX */
                    d__3 = xl[i__], d__4 = xbase[i__] + xopt[i__];
                    d__1 = std::max(d__3,d__4), d__2 = xu[i__];
                    x[i__] = std::min(d__1,d__2);
                    if (xopt[i__] == sl[i__]) {
                        x[i__] = xl[i__];
                    }
                    if (xopt[i__] == su[i__]) {
                        x[i__] = xu[i__];
                    }
                    /* L730: */
                }
                f = fval[kopt];
            }

            return f;
        } /* bobyqb_ */

    // ----------------------------------------------------------------------------------------

        void altmov_(
            const integer n,
            const integer npt,
            const doublereal *xpt, 
            const doublereal *xopt,
            const doublereal *bmat,
            const doublereal *zmat,
            const integer ndim, 
            const doublereal *sl,
            const doublereal *su,
            const integer kopt,
            const integer knew, 
            const doublereal adelt,
            doublereal *xnew,
            doublereal *xalt,
            doublereal& alpha,
            doublereal& cauchy,
            doublereal *glag,
            doublereal *hcol, 
            doublereal *w
        ) const
        {
            /* System generated locals */
            integer xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, 
            zmat_offset, i__1, i__2;
            doublereal d__1, d__2, d__3, d__4;


            /* Local variables */
            integer i__, j, k;
            doublereal ha, gw, one, diff, half;
            integer ilbd, isbd;
            doublereal slbd;
            integer iubd;
            doublereal vlag, subd, temp;
            integer ksav = 0;
            doublereal step = 0, zero = 0, curv = 0;
            integer iflag;
            doublereal scale = 0, csave = 0, tempa = 0, tempb = 0, tempd = 0, const__ = 0, sumin = 0, 
                       ggfree = 0;
            integer ibdsav = 0;
            doublereal dderiv = 0, bigstp = 0, predsq = 0, presav = 0, distsq = 0, stpsav = 0, wfixsq = 0, wsqsav = 0;


            /*     The arguments N, NPT, XPT, XOPT, BMAT, ZMAT, NDIM, SL and SU all have */
            /*       the same meanings as the corresponding arguments of BOBYQB. */
            /*     KOPT is the index of the optimal interpolation point. */
            /*     KNEW is the index of the interpolation point that is going to be moved. */
            /*     ADELT is the current trust region bound. */
            /*     XNEW will be set to a suitable new position for the interpolation point */
            /*       XPT(KNEW,.). Specifically, it satisfies the SL, SU and trust region */
            /*       bounds and it should provide a large denominator in the next call of */
            /*       UPDATE. The step XNEW-XOPT from XOPT is restricted to moves along the */
            /*       straight lines through XOPT and another interpolation point. */
            /*     XALT also provides a large value of the modulus of the KNEW-th Lagrange */
            /*       function subject to the constraints that have been mentioned, its main */
            /*       difference from XNEW being that XALT-XOPT is a constrained version of */
            /*       the Cauchy step within the trust region. An exception is that XALT is */
            /*       not calculated if all components of GLAG (see below) are zero. */
            /*     ALPHA will be set to the KNEW-th diagonal element of the H matrix. */
            /*     CAUCHY will be set to the square of the KNEW-th Lagrange function at */
            /*       the step XALT-XOPT from XOPT for the vector XALT that is returned, */
            /*       except that CAUCHY is set to zero if XALT is not calculated. */
            /*     GLAG is a working space vector of length N for the gradient of the */
            /*       KNEW-th Lagrange function at XOPT. */
            /*     HCOL is a working space vector of length NPT for the second derivative */
            /*       coefficients of the KNEW-th Lagrange function. */
            /*     W is a working space vector of length 2N that is going to hold the */
            /*       constrained Cauchy step from XOPT of the Lagrange function, followed */
            /*       by the downhill version of XALT when the uphill step is calculated. */

            /*     Set the first NPT components of W to the leading elements of the */
            /*     KNEW-th column of the H matrix. */

            /* Parameter adjustments */
            zmat_dim1 = npt;
            zmat_offset = 1 + zmat_dim1;
            zmat -= zmat_offset;
            xpt_dim1 = npt;
            xpt_offset = 1 + xpt_dim1;
            xpt -= xpt_offset;
            --xopt;
            bmat_dim1 = ndim;
            bmat_offset = 1 + bmat_dim1;
            bmat -= bmat_offset;
            --sl;
            --su;
            --xnew;
            --xalt;
            --glag;
            --hcol;
            --w;

            /* Function Body */
            half = .5;
            one = 1.;
            zero = 0.;
            const__ = one + std::sqrt(2.);
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                /* L10: */
                hcol[k] = zero;
            }
            i__1 = npt - n - 1;
            for (j = 1; j <= i__1; ++j) {
                temp = zmat[knew + j * zmat_dim1];
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    /* L20: */
                    hcol[k] += temp * zmat[k + j * zmat_dim1];
                }
            }
            alpha = hcol[knew];
            ha = half * alpha;

            /*     Calculate the gradient of the KNEW-th Lagrange function at XOPT. */

            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__) {
                /* L30: */
                glag[i__] = bmat[knew + i__ * bmat_dim1];
            }
            i__2 = npt;
            for (k = 1; k <= i__2; ++k) {
                temp = zero;
                i__1 = n;
                for (j = 1; j <= i__1; ++j) {
                    /* L40: */
                    temp += xpt[k + j * xpt_dim1] * xopt[j];
                }
                temp = hcol[k] * temp;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    /* L50: */
                    glag[i__] += temp * xpt[k + i__ * xpt_dim1];
                }
            }

            /*     Search for a large denominator along the straight lines through XOPT */
            /*     and another interpolation point. SLBD and SUBD will be lower and upper */
            /*     bounds on the step along each of these lines in turn. PREDSQ will be */
            /*     set to the square of the predicted denominator for each line. PRESAV */
            /*     will be set to the largest admissible value of PREDSQ that occurs. */

            presav = zero;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                if (k == kopt) {
                    goto L80;
                }
                dderiv = zero;
                distsq = zero;
                i__2 = n;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    temp = xpt[k + i__ * xpt_dim1] - xopt[i__];
                    dderiv += glag[i__] * temp;
                    /* L60: */
                    distsq += temp * temp;
                }
                subd = adelt / std::sqrt(distsq);
                slbd = -subd;
                ilbd = 0;
                iubd = 0;
                sumin = std::min(one,subd);

                /*     Revise SLBD and SUBD if necessary because of the bounds in SL and SU. */

                i__2 = n;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    temp = xpt[k + i__ * xpt_dim1] - xopt[i__];
                    if (temp > zero) {
                        if (slbd * temp < sl[i__] - xopt[i__]) {
                            slbd = (sl[i__] - xopt[i__]) / temp;
                            ilbd = -i__;
                        }
                        if (subd * temp > su[i__] - xopt[i__]) {
                            /* Computing MAX */
                            d__1 = sumin, d__2 = (su[i__] - xopt[i__]) / temp;
                            subd = std::max(d__1,d__2);
                            iubd = i__;
                        }
                    } else if (temp < zero) {
                        if (slbd * temp > su[i__] - xopt[i__]) {
                            slbd = (su[i__] - xopt[i__]) / temp;
                            ilbd = i__;
                        }
                        if (subd * temp < sl[i__] - xopt[i__]) {
                            /* Computing MAX */
                            d__1 = sumin, d__2 = (sl[i__] - xopt[i__]) / temp;
                            subd = std::max(d__1,d__2);
                            iubd = -i__;
                        }
                    }
                    /* L70: */
                }

                /*     Seek a large modulus of the KNEW-th Lagrange function when the index */
                /*     of the other interpolation point on the line through XOPT is KNEW. */

                if (k == knew) {
                    diff = dderiv - one;
                    step = slbd;
                    vlag = slbd * (dderiv - slbd * diff);
                    isbd = ilbd;
                    temp = subd * (dderiv - subd * diff);
                    if (std::abs(temp) > std::abs(vlag)) {
                        step = subd;
                        vlag = temp;
                        isbd = iubd;
                    }
                    tempd = half * dderiv;
                    tempa = tempd - diff * slbd;
                    tempb = tempd - diff * subd;
                    if (tempa * tempb < zero) {
                        temp = tempd * tempd / diff;
                        if (std::abs(temp) > std::abs(vlag)) {
                            step = tempd / diff;
                            vlag = temp;
                            isbd = 0;
                        }
                    }

                    /*     Search along each of the other lines through XOPT and another point. */

                } else {
                    step = slbd;
                    vlag = slbd * (one - slbd);
                    isbd = ilbd;
                    temp = subd * (one - subd);
                    if (std::abs(temp) > std::abs(vlag)) {
                        step = subd;
                        vlag = temp;
                        isbd = iubd;
                    }
                    if (subd > half) {
                        if (std::abs(vlag) < .25) {
                            step = half;
                            vlag = .25;
                            isbd = 0;
                        }
                    }
                    vlag *= dderiv;
                }

                /*     Calculate PREDSQ for the current line search and maintain PRESAV. */

                temp = step * (one - step) * distsq;
                predsq = vlag * vlag * (vlag * vlag + ha * temp * temp);
                if (predsq > presav) {
                    presav = predsq;
                    ksav = k;
                    stpsav = step;
                    ibdsav = isbd;
                }
L80:
                ;
            }

            /*     Construct XNEW in a way that satisfies the bound constraints exactly. */

            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                temp = xopt[i__] + stpsav * (xpt[ksav + i__ * xpt_dim1] - xopt[i__]);
                /* L90: */
                /* Computing MAX */
                /* Computing MIN */
                d__3 = su[i__];
                d__1 = sl[i__], d__2 = std::min(d__3,temp);
                xnew[i__] = std::max(d__1,d__2);
            }
            if (ibdsav < 0) {
                xnew[-ibdsav] = sl[-ibdsav];
            }
            if (ibdsav > 0) {
                xnew[ibdsav] = su[ibdsav];
            }

            /*     Prepare for the iterative method that assembles the constrained Cauchy */
            /*     step in W. The sum of squares of the fixed components of W is formed in */
            /*     WFIXSQ, and the free components of W are set to BIGSTP. */

            bigstp = adelt + adelt;
            iflag = 0;
L100:
            wfixsq = zero;
            ggfree = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                w[i__] = zero;
                /* Computing MIN */
                d__1 = xopt[i__] - sl[i__], d__2 = glag[i__];
                tempa = std::min(d__1,d__2);
                /* Computing MAX */
                d__1 = xopt[i__] - su[i__], d__2 = glag[i__];
                tempb = std::max(d__1,d__2);
                if (tempa > zero || tempb < zero) {
                    w[i__] = bigstp;
                    /* Computing 2nd power */
                    d__1 = glag[i__];
                    ggfree += d__1 * d__1;
                }
                /* L110: */
            }
            if (ggfree == zero) {
                cauchy = zero;
                goto L200;
            }

            /*     Investigate whether more components of W can be fixed. */

L120:
            temp = adelt * adelt - wfixsq;
            if (temp > zero) {
                wsqsav = wfixsq;
                step = std::sqrt(temp / ggfree);
                ggfree = zero;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    if (w[i__] == bigstp) {
                        temp = xopt[i__] - step * glag[i__];
                        if (temp <= sl[i__]) {
                            w[i__] = sl[i__] - xopt[i__];
                            /* Computing 2nd power */
                            d__1 = w[i__];
                            wfixsq += d__1 * d__1;
                        } else if (temp >= su[i__]) {
                            w[i__] = su[i__] - xopt[i__];
                            /* Computing 2nd power */
                            d__1 = w[i__];
                            wfixsq += d__1 * d__1;
                        } else {
                            /* Computing 2nd power */
                            d__1 = glag[i__];
                            ggfree += d__1 * d__1;
                        }
                    }
                    /* L130: */
                }
                if (wfixsq > wsqsav && ggfree > zero) {
                    goto L120;
                }
            }

            /*     Set the remaining free components of W and all components of XALT, */
            /*     except that W may be scaled later. */

            gw = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (w[i__] == bigstp) {
                    w[i__] = -step * glag[i__];
                    /* Computing MAX */
                    /* Computing MIN */
                    d__3 = su[i__], d__4 = xopt[i__] + w[i__];
                    d__1 = sl[i__], d__2 = std::min(d__3,d__4);
                    xalt[i__] = std::max(d__1,d__2);
                } else if (w[i__] == zero) {
                    xalt[i__] = xopt[i__];
                } else if (glag[i__] > zero) {
                    xalt[i__] = sl[i__];
                } else {
                    xalt[i__] = su[i__];
                }
                /* L140: */
                gw += glag[i__] * w[i__];
            }

            /*     Set CURV to the curvature of the KNEW-th Lagrange function along W. */
            /*     Scale W by a factor less than one if that can reduce the modulus of */
            /*     the Lagrange function at XOPT+W. Set CAUCHY to the final value of */
            /*     the square of this function. */

            curv = zero;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                temp = zero;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    /* L150: */
                    temp += xpt[k + j * xpt_dim1] * w[j];
                }
                /* L160: */
                curv += hcol[k] * temp * temp;
            }
            if (iflag == 1) {
                curv = -curv;
            }
            if (curv > -gw && curv < -const__ * gw) {
                scale = -gw / curv;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    temp = xopt[i__] + scale * w[i__];
                    /* L170: */
                    /* Computing MAX */
                    /* Computing MIN */
                    d__3 = su[i__];
                    d__1 = sl[i__], d__2 = std::min(d__3,temp);
                    xalt[i__] = std::max(d__1,d__2);
                }
                /* Computing 2nd power */
                d__1 = half * gw * scale;
                cauchy = d__1 * d__1;
            } else {
                /* Computing 2nd power */
                d__1 = gw + half * curv;
                cauchy = d__1 * d__1;
            }

            /*     If IFLAG is zero, then XALT is calculated as before after reversing */
            /*     the sign of GLAG. Thus two XALT vectors become available. The one that */
            /*     is chosen is the one that gives the larger value of CAUCHY. */

            if (iflag == 0) {
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    glag[i__] = -glag[i__];
                    /* L180: */
                    w[n + i__] = xalt[i__];
                }
                csave = cauchy;
                iflag = 1;
                goto L100;
            }
            if (csave > cauchy) {
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    /* L190: */
                    xalt[i__] = w[n + i__];
                }
                cauchy = csave;
            }
L200:
            ;
        } /* altmov_ */

    // ----------------------------------------------------------------------------------------

        template <typename funct>
        void prelim_(
            const funct& calfun,
            const integer n,
            const integer npt,
            doublereal *x, 
            const doublereal *xl,
            const doublereal *xu,
            const doublereal rhobeg,
            const integer maxfun,
            doublereal *xbase,
            doublereal *xpt,
            doublereal *fval,
            doublereal *gopt,
            doublereal *hq,
            doublereal *pq,
            doublereal *bmat, 
            doublereal *zmat,
            const integer ndim,
            const doublereal *sl,
            const doublereal *su, 
            integer& nf, 
            integer& kopt
        ) const
        {
            /* System generated locals */
            integer xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, 
            zmat_offset, i__1, i__2;
            doublereal d__1, d__2, d__3, d__4;


            /* Local variables */
            doublereal f;
            integer i__, j, k, ih, np, nfm;
            doublereal one;
            integer nfx = 0, ipt = 0, jpt = 0;
            doublereal two = 0, fbeg = 0, diff = 0, half = 0, temp = 0, zero = 0, recip = 0, stepa = 0, stepb = 0;
            integer itemp;
            doublereal rhosq;



            /*     The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the */
            /*       same as the corresponding arguments in SUBROUTINE BOBYQA. */
            /*     The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU */
            /*       are the same as the corresponding arguments in BOBYQB, the elements */
            /*       of SL and SU being set in BOBYQA. */
            /*     GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but */
            /*       it is set by PRELIM to the gradient of the quadratic model at XBASE. */
            /*       If XOPT is nonzero, BOBYQB will change it to its usual value later. */
            /*     NF is maintaned as the number of calls of CALFUN so far. */
            /*     KOPT will be such that the least calculated value of F so far is at */
            /*       the point XPT(KOPT,.)+XBASE in the space of the variables. */

            /*     SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ, */
            /*     BMAT and ZMAT for the first iteration, and it maintains the values of */
            /*     NF and KOPT. The vector X is also changed by PRELIM. */

            /*     Set some constants. */

            /* Parameter adjustments */
            zmat_dim1 = npt;
            zmat_offset = 1 + zmat_dim1;
            zmat -= zmat_offset;
            xpt_dim1 = npt;
            xpt_offset = 1 + xpt_dim1;
            xpt -= xpt_offset;
            --x;
            --xl;
            --xu;
            --xbase;
            --fval;
            --gopt;
            --hq;
            --pq;
            bmat_dim1 = ndim;
            bmat_offset = 1 + bmat_dim1;
            bmat -= bmat_offset;
            --sl;
            --su;

            /* Function Body */
            half = .5;
            one = 1.;
            two = 2.;
            zero = 0.;
            rhosq = rhobeg * rhobeg;
            recip = one / rhosq;
            np = n + 1;

            /*     Set XBASE to the initial vector of variables, and set the initial */
            /*     elements of XPT, BMAT, HQ, PQ and ZMAT to zero. */

            i__1 = n;
            for (j = 1; j <= i__1; ++j) {
                xbase[j] = x[j];
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    /* L10: */
                    xpt[k + j * xpt_dim1] = zero;
                }
                i__2 = ndim;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    /* L20: */
                    bmat[i__ + j * bmat_dim1] = zero;
                }
            }
            i__2 = n * np / 2;
            for (ih = 1; ih <= i__2; ++ih) {
                /* L30: */
                hq[ih] = zero;
            }
            i__2 = npt;
            for (k = 1; k <= i__2; ++k) {
                pq[k] = zero;
                i__1 = npt - np;
                for (j = 1; j <= i__1; ++j) {
                    /* L40: */
                    zmat[k + j * zmat_dim1] = zero;
                }
            }

            /*     Begin the initialization procedure. NF becomes one more than the number */
            /*     of function values so far. The coordinates of the displacement of the */
            /*     next initial interpolation point from XBASE are set in XPT(NF+1,.). */

            nf = 0;
L50:
            nfm = nf;
            nfx = nf - n;
            ++(nf);
            if (nfm <= n << 1) {
                if (nfm >= 1 && nfm <= n) {
                    stepa = rhobeg;
                    if (su[nfm] == zero) {
                        stepa = -stepa;
                    }
                    xpt[nf + nfm * xpt_dim1] = stepa;
                } else if (nfm > n) {
                    stepa = xpt[nf - n + nfx * xpt_dim1];
                    stepb = -(rhobeg);
                    if (sl[nfx] == zero) {
                        /* Computing MIN */
                        d__1 = two * rhobeg, d__2 = su[nfx];
                        stepb = std::min(d__1,d__2);
                    }
                    if (su[nfx] == zero) {
                        /* Computing MAX */
                        d__1 = -two * rhobeg, d__2 = sl[nfx];
                        stepb = std::max(d__1,d__2);
                    }
                    xpt[nf + nfx * xpt_dim1] = stepb;
                }
            } else {
                itemp = (nfm - np) / n;
                jpt = nfm - itemp * n - n;
                ipt = jpt + itemp;
                if (ipt > n) {
                    itemp = jpt;
                    jpt = ipt - n;
                    ipt = itemp;
                }
                xpt[nf + ipt * xpt_dim1] = xpt[ipt + 1 + ipt * xpt_dim1];
                xpt[nf + jpt * xpt_dim1] = xpt[jpt + 1 + jpt * xpt_dim1];
            }

            /*     Calculate the next value of F. The least function value so far and */
            /*     its index are required. */

            i__1 = n;
            for (j = 1; j <= i__1; ++j) {
                /* Computing MIN */
                /* Computing MAX */
                d__3 = xl[j], d__4 = xbase[j] + xpt[nf + j * xpt_dim1];
                d__1 = std::max(d__3,d__4), d__2 = xu[j];
                x[j] = std::min(d__1,d__2);
                if (xpt[nf + j * xpt_dim1] == sl[j]) {
                    x[j] = xl[j];
                }
                if (xpt[nf + j * xpt_dim1] == su[j]) {
                    x[j] = xu[j];
                }
                /* L60: */
            }
            f = calfun(mat(&x[1],n));
            fval[nf] = f;
            if (nf == 1) {
                fbeg = f;
                kopt = 1;
            } else if (f < fval[kopt]) {
                kopt = nf;
            }

            /*     Set the nonzero initial elements of BMAT and the quadratic model in the */
            /*     cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions */
            /*     of the NF-th and (NF-N)-th interpolation points may be switched, in */
            /*     order that the function value at the first of them contributes to the */
            /*     off-diagonal second derivative terms of the initial quadratic model. */

            if (nf <= (n << 1) + 1) {
                if (nf >= 2 && nf <= n + 1) {
                    gopt[nfm] = (f - fbeg) / stepa;
                    if (npt < nf + n) {
                        bmat[nfm * bmat_dim1 + 1] = -one / stepa;
                        bmat[nf + nfm * bmat_dim1] = one / stepa;
                        bmat[npt + nfm + nfm * bmat_dim1] = -half * rhosq;
                    }
                } else if (nf >= n + 2) {
                    ih = nfx * (nfx + 1) / 2;
                    temp = (f - fbeg) / stepb;
                    diff = stepb - stepa;
                    hq[ih] = two * (temp - gopt[nfx]) / diff;
                    gopt[nfx] = (gopt[nfx] * stepb - temp * stepa) / diff;
                    if (stepa * stepb < zero) {
                        if (f < fval[nf - n]) {
                            fval[nf] = fval[nf - n];
                            fval[nf - n] = f;
                            if (kopt == nf) {
                                kopt = nf - n;
                            }
                            xpt[nf - n + nfx * xpt_dim1] = stepb;
                            xpt[nf + nfx * xpt_dim1] = stepa;
                        }
                    }
                    bmat[nfx * bmat_dim1 + 1] = -(stepa + stepb) / (stepa * stepb);
                    bmat[nf + nfx * bmat_dim1] = -half / xpt[nf - n + nfx * 
                        xpt_dim1];
                    bmat[nf - n + nfx * bmat_dim1] = -bmat[nfx * bmat_dim1 + 1] - 
                        bmat[nf + nfx * bmat_dim1];
                    zmat[nfx * zmat_dim1 + 1] = std::sqrt(two) / (stepa * stepb);
                    zmat[nf + nfx * zmat_dim1] = std::sqrt(half) / rhosq;
                    zmat[nf - n + nfx * zmat_dim1] = -zmat[nfx * zmat_dim1 + 1] - 
                        zmat[nf + nfx * zmat_dim1];
                }

                /*     Set the off-diagonal second derivatives of the Lagrange functions and */
                /*     the initial quadratic model. */

            } else {
                ih = ipt * (ipt - 1) / 2 + jpt;
                zmat[nfx * zmat_dim1 + 1] = recip;
                zmat[nf + nfx * zmat_dim1] = recip;
                zmat[ipt + 1 + nfx * zmat_dim1] = -recip;
                zmat[jpt + 1 + nfx * zmat_dim1] = -recip;
                temp = xpt[nf + ipt * xpt_dim1] * xpt[nf + jpt * xpt_dim1];
                hq[ih] = (fbeg - fval[ipt + 1] - fval[jpt + 1] + f) / temp;
            }
            if (nf < npt && nf < maxfun) {
                goto L50;
            }

        } /* prelim_ */

    // ----------------------------------------------------------------------------------------

        template <typename funct>
        void rescue_ (
            const funct& calfun,
            const integer n,
            const integer npt,
            const doublereal *xl, 
            const doublereal *xu,
            const integer maxfun,
            doublereal *xbase, 
            doublereal *xpt, 
            doublereal *fval,
            doublereal *xopt,
            doublereal *gopt,
            doublereal *hq, 
            doublereal *pq,
            doublereal *bmat,
            doublereal *zmat, 
            const integer ndim,
            doublereal *sl,
            doublereal *su,
            integer& nf, 
            const doublereal delta,
            integer& kopt,
            doublereal *vlag,
            doublereal * ptsaux,
            doublereal *ptsid,
            doublereal *w
        ) const
        {
            /* System generated locals */
            integer xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, 
            zmat_offset, i__1, i__2, i__3;
            doublereal d__1, d__2, d__3, d__4;


            /* Local variables */
            doublereal f;
            integer i__, j, k, ih, jp, ip, iq, np, iw;
            doublereal xp = 0, xq = 0, den = 0;
            integer ihp = 0;
            doublereal one;
            integer ihq, jpn, kpt;
            doublereal sum = 0, diff = 0, half = 0, beta = 0;
            integer kold;
            doublereal winc;
            integer nrem, knew;
            doublereal temp, bsum;
            integer nptm;
            doublereal zero = 0, hdiag = 0, fbase = 0, sfrac = 0, denom = 0, vquad = 0, sumpq = 0;
            doublereal dsqmin, distsq, vlmxsq;



            /*     The arguments N, NPT, XL, XU, IPRINT, MAXFUN, XBASE, XPT, FVAL, XOPT, */
            /*       GOPT, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU have the same meanings as */
            /*       the corresponding arguments of BOBYQB on the entry to RESCUE. */
            /*     NF is maintained as the number of calls of CALFUN so far, except that */
            /*       NF is set to -1 if the value of MAXFUN prevents further progress. */
            /*     KOPT is maintained so that FVAL(KOPT) is the least calculated function */
            /*       value. Its correct value must be given on entry. It is updated if a */
            /*       new least function value is found, but the corresponding changes to */
            /*       XOPT and GOPT have to be made later by the calling program. */
            /*     DELTA is the current trust region radius. */
            /*     VLAG is a working space vector that will be used for the values of the */
            /*       provisional Lagrange functions at each of the interpolation points. */
            /*       They are part of a product that requires VLAG to be of length NDIM. */
            /*     PTSAUX is also a working space array. For J=1,2,...,N, PTSAUX(1,J) and */
            /*       PTSAUX(2,J) specify the two positions of provisional interpolation */
            /*       points when a nonzero step is taken along e_J (the J-th coordinate */
            /*       direction) through XBASE+XOPT, as specified below. Usually these */
            /*       steps have length DELTA, but other lengths are chosen if necessary */
            /*       in order to satisfy the given bounds on the variables. */
            /*     PTSID is also a working space array. It has NPT components that denote */
            /*       provisional new positions of the original interpolation points, in */
            /*       case changes are needed to restore the linear independence of the */
            /*       interpolation conditions. The K-th point is a candidate for change */
            /*       if and only if PTSID(K) is nonzero. In this case let p and q be the */
            /*       integer parts of PTSID(K) and (PTSID(K)-p) multiplied by N+1. If p */
            /*       and q are both positive, the step from XBASE+XOPT to the new K-th */
            /*       interpolation point is PTSAUX(1,p)*e_p + PTSAUX(1,q)*e_q. Otherwise */
            /*       the step is PTSAUX(1,p)*e_p or PTSAUX(2,q)*e_q in the cases q=0 or */
            /*       p=0, respectively. */
            /*     The first NDIM+NPT elements of the array W are used for working space. */
            /*     The final elements of BMAT and ZMAT are set in a well-conditioned way */
            /*       to the values that are appropriate for the new interpolation points. */
            /*     The elements of GOPT, HQ and PQ are also revised to the values that are */
            /*       appropriate to the final quadratic model. */

            /*     Set some constants. */

            /* Parameter adjustments */
            zmat_dim1 = npt;
            zmat_offset = 1 + zmat_dim1;
            zmat -= zmat_offset;
            xpt_dim1 = npt;
            xpt_offset = 1 + xpt_dim1;
            xpt -= xpt_offset;
            --xl;
            --xu;
            --xbase;
            --fval;
            --xopt;
            --gopt;
            --hq;
            --pq;
            bmat_dim1 = ndim;
            bmat_offset = 1 + bmat_dim1;
            bmat -= bmat_offset;
            --sl;
            --su;
            --vlag;
            ptsaux -= 3;
            --ptsid;
            --w;

            /* Function Body */
            half = .5;
            one = 1.;
            zero = 0.;
            np = n + 1;
            sfrac = half / (doublereal) np;
            nptm = npt - np;

            /*     Shift the interpolation points so that XOPT becomes the origin, and set */
            /*     the elements of ZMAT to zero. The value of SUMPQ is required in the */
            /*     updating of HQ below. The squares of the distances from XOPT to the */
            /*     other interpolation points are set at the end of W. Increments of WINC */
            /*     may be added later to these squares to balance the consideration of */
            /*     the choice of point that is going to become current. */

            sumpq = zero;
            winc = zero;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                distsq = zero;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    xpt[k + j * xpt_dim1] -= xopt[j];
                    /* L10: */
                    /* Computing 2nd power */
                    d__1 = xpt[k + j * xpt_dim1];
                    distsq += d__1 * d__1;
                }
                sumpq += pq[k];
                w[ndim + k] = distsq;
                winc = std::max(winc,distsq);
                i__2 = nptm;
                for (j = 1; j <= i__2; ++j) {
                    /* L20: */
                    zmat[k + j * zmat_dim1] = zero;
                }
            }

            /*     Update HQ so that HQ and PQ define the second derivatives of the model */
            /*     after XBASE has been shifted to the trust region centre. */

            ih = 0;
            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                w[j] = half * sumpq * xopt[j];
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    /* L30: */
                    w[j] += pq[k] * xpt[k + j * xpt_dim1];
                }
                i__1 = j;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    ++ih;
                    /* L40: */
                    hq[ih] = hq[ih] + w[i__] * xopt[j] + w[j] * xopt[i__];
                }
            }

            /*     Shift XBASE, SL, SU and XOPT. Set the elements of BMAT to zero, and */
            /*     also set the elements of PTSAUX. */

            i__1 = n;
            for (j = 1; j <= i__1; ++j) {
                xbase[j] += xopt[j];
                sl[j] -= xopt[j];
                su[j] -= xopt[j];
                xopt[j] = zero;
                /* Computing MIN */
                d__1 = delta, d__2 = su[j];
                ptsaux[(j << 1) + 1] = std::min(d__1,d__2);
                /* Computing MAX */
                d__1 = -(delta), d__2 = sl[j];
                ptsaux[(j << 1) + 2] = std::max(d__1,d__2);
                if (ptsaux[(j << 1) + 1] + ptsaux[(j << 1) + 2] < zero) {
                    temp = ptsaux[(j << 1) + 1];
                    ptsaux[(j << 1) + 1] = ptsaux[(j << 1) + 2];
                    ptsaux[(j << 1) + 2] = temp;
                }
                if ((d__2 = ptsaux[(j << 1) + 2], std::abs(d__2)) < half * (d__1 = ptsaux[(
                            j << 1) + 1], std::abs(d__1))) {
                    ptsaux[(j << 1) + 2] = half * ptsaux[(j << 1) + 1];
                }
                i__2 = ndim;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    /* L50: */
                    bmat[i__ + j * bmat_dim1] = zero;
                }
            }
            fbase = fval[kopt];

            /*     Set the identifiers of the artificial interpolation points that are */
            /*     along a coordinate direction from XOPT, and set the corresponding */
            /*     nonzero elements of BMAT and ZMAT. */

            ptsid[1] = sfrac;
            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                jp = j + 1;
                jpn = jp + n;
                ptsid[jp] = (doublereal) j + sfrac;
                if (jpn <= npt) {
                    ptsid[jpn] = (doublereal) j / (doublereal) np + sfrac;
                    temp = one / (ptsaux[(j << 1) + 1] - ptsaux[(j << 1) + 2]);
                    bmat[jp + j * bmat_dim1] = -temp + one / ptsaux[(j << 1) + 1];
                    bmat[jpn + j * bmat_dim1] = temp + one / ptsaux[(j << 1) + 2];
                    bmat[j * bmat_dim1 + 1] = -bmat[jp + j * bmat_dim1] - bmat[jpn + 
                        j * bmat_dim1];
                    zmat[j * zmat_dim1 + 1] = std::sqrt(2.) / (d__1 = ptsaux[(j << 1) + 1] 
                                                          * ptsaux[(j << 1) + 2], std::abs(d__1));
                    zmat[jp + j * zmat_dim1] = zmat[j * zmat_dim1 + 1] * ptsaux[(j << 
                                                                                 1) + 2] * temp;
                    zmat[jpn + j * zmat_dim1] = -zmat[j * zmat_dim1 + 1] * ptsaux[(j 
                                                                                   << 1) + 1] * temp;
                } else {
                    bmat[j * bmat_dim1 + 1] = -one / ptsaux[(j << 1) + 1];
                    bmat[jp + j * bmat_dim1] = one / ptsaux[(j << 1) + 1];
                    /* Computing 2nd power */
                    d__1 = ptsaux[(j << 1) + 1];
                    bmat[j + npt + j * bmat_dim1] = -half * (d__1 * d__1);
                }
                /* L60: */
            }

            /*     Set any remaining identifiers with their nonzero elements of ZMAT. */

            if (npt >= n + np) {
                i__2 = npt;
                for (k = np << 1; k <= i__2; ++k) {
                    iw = (integer) (((doublereal) (k - np) - half) / (doublereal) (n)
                    );
                    ip = k - np - iw * n;
                    iq = ip + iw;
                    if (iq > n) {
                        iq -= n;
                    }
                    ptsid[k] = (doublereal) ip + (doublereal) iq / (doublereal) np + 
                        sfrac;
                    temp = one / (ptsaux[(ip << 1) + 1] * ptsaux[(iq << 1) + 1]);
                    zmat[(k - np) * zmat_dim1 + 1] = temp;
                    zmat[ip + 1 + (k - np) * zmat_dim1] = -temp;
                    zmat[iq + 1 + (k - np) * zmat_dim1] = -temp;
                    /* L70: */
                    zmat[k + (k - np) * zmat_dim1] = temp;
                }
            }
            nrem = npt;
            kold = 1;
            knew = kopt;

            /*     Reorder the provisional points in the way that exchanges PTSID(KOLD) */
            /*     with PTSID(KNEW). */

L80:
            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                temp = bmat[kold + j * bmat_dim1];
                bmat[kold + j * bmat_dim1] = bmat[knew + j * bmat_dim1];
                /* L90: */
                bmat[knew + j * bmat_dim1] = temp;
            }
            i__2 = nptm;
            for (j = 1; j <= i__2; ++j) {
                temp = zmat[kold + j * zmat_dim1];
                zmat[kold + j * zmat_dim1] = zmat[knew + j * zmat_dim1];
                /* L100: */
                zmat[knew + j * zmat_dim1] = temp;
            }
            ptsid[kold] = ptsid[knew];
            ptsid[knew] = zero;
            w[ndim + knew] = zero;
            --nrem;
            if (knew != kopt) {
                temp = vlag[kold];
                vlag[kold] = vlag[knew];
                vlag[knew] = temp;

                /*     Update the BMAT and ZMAT matrices so that the status of the KNEW-th */
                /*     interpolation point can be changed from provisional to original. The */
                /*     branch to label 350 occurs if all the original points are reinstated. */
                /*     The nonnegative values of W(NDIM+K) are required in the search below. */

                update_(n, npt, &bmat[bmat_offset], &zmat[zmat_offset], ndim, &vlag[1], 
                        beta, denom, knew, &w[1]);
                if (nrem == 0) {
                    goto L350;
                }
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    /* L110: */
                    w[ndim + k] = (d__1 = w[ndim + k], std::abs(d__1));
                }
            }

            /*     Pick the index KNEW of an original interpolation point that has not */
            /*     yet replaced one of the provisional interpolation points, giving */
            /*     attention to the closeness to XOPT and to previous tries with KNEW. */

L120:
            dsqmin = zero;
            i__2 = npt;
            for (k = 1; k <= i__2; ++k) {
                if (w[ndim + k] > zero) {
                    if (dsqmin == zero || w[ndim + k] < dsqmin) {
                        knew = k;
                        dsqmin = w[ndim + k];
                    }
                }
                /* L130: */
            }
            if (dsqmin == zero) {
                goto L260;
            }

            /*     Form the W-vector of the chosen original interpolation point. */

            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                /* L140: */
                w[npt + j] = xpt[knew + j * xpt_dim1];
            }
            i__2 = npt;
            for (k = 1; k <= i__2; ++k) {
                sum = zero;
                if (k == kopt) {
                } else if (ptsid[k] == zero) {
                    i__1 = n;
                    for (j = 1; j <= i__1; ++j) {
                        /* L150: */
                        sum += w[npt + j] * xpt[k + j * xpt_dim1];
                    }
                } else {
                    ip = (integer) ptsid[k];
                    if (ip > 0) {
                        sum = w[npt + ip] * ptsaux[(ip << 1) + 1];
                    }
                    iq = (integer) ((doublereal) np * ptsid[k] - (doublereal) (ip * 
                                                                               np));
                    if (iq > 0) {
                        iw = 1;
                        if (ip == 0) {
                            iw = 2;
                        }
                        sum += w[npt + iq] * ptsaux[iw + (iq << 1)];
                    }
                }
                /* L160: */
                w[k] = half * sum * sum;
            }

            /*     Calculate VLAG and BETA for the required updating of the H matrix if */
            /*     XPT(KNEW,.) is reinstated in the set of interpolation points. */

            i__2 = npt;
            for (k = 1; k <= i__2; ++k) {
                sum = zero;
                i__1 = n;
                for (j = 1; j <= i__1; ++j) {
                    /* L170: */
                    sum += bmat[k + j * bmat_dim1] * w[npt + j];
                }
                /* L180: */
                vlag[k] = sum;
            }
            beta = zero;
            i__2 = nptm;
            for (j = 1; j <= i__2; ++j) {
                sum = zero;
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    /* L190: */
                    sum += zmat[k + j * zmat_dim1] * w[k];
                }
                beta -= sum * sum;
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    /* L200: */
                    vlag[k] += sum * zmat[k + j * zmat_dim1];
                }
            }
            bsum = zero;
            distsq = zero;
            i__1 = n;
            for (j = 1; j <= i__1; ++j) {
                sum = zero;
                i__2 = npt;
                for (k = 1; k <= i__2; ++k) {
                    /* L210: */
                    sum += bmat[k + j * bmat_dim1] * w[k];
                }
                jp = j + npt;
                bsum += sum * w[jp];
                i__2 = ndim;
                for (ip = npt + 1; ip <= i__2; ++ip) {
                    /* L220: */
                    sum += bmat[ip + j * bmat_dim1] * w[ip];
                }
                bsum += sum * w[jp];
                vlag[jp] = sum;
                /* L230: */
                /* Computing 2nd power */
                d__1 = xpt[knew + j * xpt_dim1];
                distsq += d__1 * d__1;
            }
            beta = half * distsq * distsq + beta - bsum;
            vlag[kopt] += one;

            /*     KOLD is set to the index of the provisional interpolation point that is */
            /*     going to be deleted to make way for the KNEW-th original interpolation */
            /*     point. The choice of KOLD is governed by the avoidance of a small value */
            /*     of the denominator in the updating calculation of UPDATE. */

            denom = zero;
            vlmxsq = zero;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                if (ptsid[k] != zero) {
                    hdiag = zero;
                    i__2 = nptm;
                    for (j = 1; j <= i__2; ++j) {
                        /* L240: */
                        /* Computing 2nd power */
                        d__1 = zmat[k + j * zmat_dim1];
                        hdiag += d__1 * d__1;
                    }
                    /* Computing 2nd power */
                    d__1 = vlag[k];
                    den = beta * hdiag + d__1 * d__1;
                    if (den > denom) {
                        kold = k;
                        denom = den;
                    }
                }
                /* L250: */
                /* Computing MAX */
                /* Computing 2nd power */
                d__3 = vlag[k];
                d__1 = vlmxsq, d__2 = d__3 * d__3;
                vlmxsq = std::max(d__1,d__2);
            }
            if (denom <= vlmxsq * .01) {
                w[ndim + knew] = -w[ndim + knew] - winc;
                goto L120;
            }
            goto L80;

            /*     When label 260 is reached, all the final positions of the interpolation */
            /*     points have been chosen although any changes have not been included yet */
            /*     in XPT. Also the final BMAT and ZMAT matrices are complete, but, apart */
            /*     from the shift of XBASE, the updating of the quadratic model remains to */
            /*     be done. The following cycle through the new interpolation points begins */
            /*     by putting the new point in XPT(KPT,.) and by setting PQ(KPT) to zero, */
            /*     except that a RETURN occurs if MAXFUN prohibits another value of F. */

L260:
            i__1 = npt;
            for (kpt = 1; kpt <= i__1; ++kpt) {
                if (ptsid[kpt] == zero) {
                    goto L340;
                }
                if (nf >= maxfun) {
                    nf = -1;
                    goto L350;
                }
                ih = 0;
                i__2 = n;
                for (j = 1; j <= i__2; ++j) {
                    w[j] = xpt[kpt + j * xpt_dim1];
                    xpt[kpt + j * xpt_dim1] = zero;
                    temp = pq[kpt] * w[j];
                    i__3 = j;
                    for (i__ = 1; i__ <= i__3; ++i__) {
                        ++ih;
                        /* L270: */
                        hq[ih] += temp * w[i__];
                    }
                }
                pq[kpt] = zero;
                ip = (integer) ptsid[kpt];
                iq = (integer) ((doublereal) np * ptsid[kpt] - (doublereal) (ip * np))
                    ;
                if (ip > 0) {
                    xp = ptsaux[(ip << 1) + 1];
                    xpt[kpt + ip * xpt_dim1] = xp;
                }
                if (iq > 0) {
                    xq = ptsaux[(iq << 1) + 1];
                    if (ip == 0) {
                        xq = ptsaux[(iq << 1) + 2];
                    }
                    xpt[kpt + iq * xpt_dim1] = xq;
                }

                /*     Set VQUAD to the value of the current model at the new point. */

                vquad = fbase;
                if (ip > 0) {
                    ihp = (ip + ip * ip) / 2;
                    vquad += xp * (gopt[ip] + half * xp * hq[ihp]);
                }
                if (iq > 0) {
                    ihq = (iq + iq * iq) / 2;
                    vquad += xq * (gopt[iq] + half * xq * hq[ihq]);
                    if (ip > 0) {
                        iw = std::max(ihp,ihq) - (i__3 = ip - iq, std::abs(i__3));
                        vquad += xp * xq * hq[iw];
                    }
                }
                i__3 = npt;
                for (k = 1; k <= i__3; ++k) {
                    temp = zero;
                    if (ip > 0) {
                        temp += xp * xpt[k + ip * xpt_dim1];
                    }
                    if (iq > 0) {
                        temp += xq * xpt[k + iq * xpt_dim1];
                    }
                    /* L280: */
                    vquad += half * pq[k] * temp * temp;
                }

                /*     Calculate F at the new interpolation point, and set DIFF to the factor */
                /*     that is going to multiply the KPT-th Lagrange function when the model */
                /*     is updated to provide interpolation to the new function value. */

                i__3 = n;
                for (i__ = 1; i__ <= i__3; ++i__) {
                    /* Computing MIN */
                    /* Computing MAX */
                    d__3 = xl[i__], d__4 = xbase[i__] + xpt[kpt + i__ * xpt_dim1];
                    d__1 = std::max(d__3,d__4), d__2 = xu[i__];
                    w[i__] = std::min(d__1,d__2);
                    if (xpt[kpt + i__ * xpt_dim1] == sl[i__]) {
                        w[i__] = xl[i__];
                    }
                    if (xpt[kpt + i__ * xpt_dim1] == su[i__]) {
                        w[i__] = xu[i__];
                    }
                    /* L290: */
                }
                ++(nf);
                f = calfun(mat(&w[1],n));
                fval[kpt] = f;
                if (f < fval[kopt]) {
                    kopt = kpt;
                }
                diff = f - vquad;

                /*     Update the quadratic model. The RETURN from the subroutine occurs when */
                /*     all the new interpolation points are included in the model. */

                i__3 = n;
                for (i__ = 1; i__ <= i__3; ++i__) {
                    /* L310: */
                    gopt[i__] += diff * bmat[kpt + i__ * bmat_dim1];
                }
                i__3 = npt;
                for (k = 1; k <= i__3; ++k) {
                    sum = zero;
                    i__2 = nptm;
                    for (j = 1; j <= i__2; ++j) {
                        /* L320: */
                        sum += zmat[k + j * zmat_dim1] * zmat[kpt + j * zmat_dim1];
                    }
                    temp = diff * sum;
                    if (ptsid[k] == zero) {
                        pq[k] += temp;
                    } else {
                        ip = (integer) ptsid[k];
                        iq = (integer) ((doublereal) np * ptsid[k] - (doublereal) (ip 
                                                                                   * np));
                        ihq = (iq * iq + iq) / 2;
                        if (ip == 0) {
                            /* Computing 2nd power */
                            d__1 = ptsaux[(iq << 1) + 2];
                            hq[ihq] += temp * (d__1 * d__1);
                        } else {
                            ihp = (ip * ip + ip) / 2;
                            /* Computing 2nd power */
                            d__1 = ptsaux[(ip << 1) + 1];
                            hq[ihp] += temp * (d__1 * d__1);
                            if (iq > 0) {
                                /* Computing 2nd power */
                                d__1 = ptsaux[(iq << 1) + 1];
                                hq[ihq] += temp * (d__1 * d__1);
                                iw = std::max(ihp,ihq) - (i__2 = iq - ip, std::abs(i__2));
                                hq[iw] += temp * ptsaux[(ip << 1) + 1] * ptsaux[(iq <<
                                                                                 1) + 1];
                            }
                        }
                    }
                    /* L330: */
                }
                ptsid[kpt] = zero;
L340:
                ;
            }
L350:
            ;
        } /* rescue_ */

    // ----------------------------------------------------------------------------------------

        void trsbox_(
            const integer n,
            const integer npt,
            const doublereal *xpt, 
            const doublereal *xopt,
            const doublereal *gopt,
            const doublereal *hq,
            const doublereal *pq, 
            const doublereal *sl,
            const doublereal *su,
            const doublereal delta,
            doublereal *xnew, 
            doublereal *d__,
            doublereal *gnew,
            doublereal *xbdi,
            doublereal *s, 
            doublereal *hs,
            doublereal *hred,
            doublereal *dsq,
            doublereal *crvmin
        ) const
        {
            /* System generated locals */
            integer xpt_dim1, xpt_offset, i__1, i__2;
            doublereal d__1, d__2, d__3, d__4;

            /* Local variables */
            integer i__, j, k, ih;
            doublereal ds;
            integer iu;
            doublereal dhd, dhs, cth, one, shs, sth, ssq, half, beta, sdec, blen;
            integer iact = 0, nact = 0;
            doublereal angt, qred;
            integer isav;
            doublereal temp = 0, zero = 0, xsav = 0, xsum = 0, angbd = 0, dredg = 0, sredg = 0;
            integer iterc;
            doublereal resid = 0, delsq = 0, ggsav = 0, tempa = 0, tempb = 0,  
                       redmax = 0, dredsq = 0, redsav = 0, onemin = 0, gredsq = 0, rednew = 0;
            integer itcsav = 0;
            doublereal rdprev = 0, rdnext = 0, stplen = 0, stepsq = 0;
            integer itermax = 0;


            /*     The arguments N, NPT, XPT, XOPT, GOPT, HQ, PQ, SL and SU have the same */
            /*       meanings as the corresponding arguments of BOBYQB. */
            /*     DELTA is the trust region radius for the present calculation, which */
            /*       seeks a small value of the quadratic model within distance DELTA of */
            /*       XOPT subject to the bounds on the variables. */
            /*     XNEW will be set to a new vector of variables that is approximately */
            /*       the one that minimizes the quadratic model within the trust region */
            /*       subject to the SL and SU constraints on the variables. It satisfies */
            /*       as equations the bounds that become active during the calculation. */
            /*     D is the calculated trial step from XOPT, generated iteratively from an */
            /*       initial value of zero. Thus XNEW is XOPT+D after the final iteration. */
            /*     GNEW holds the gradient of the quadratic model at XOPT+D. It is updated */
            /*       when D is updated. */
            /*     XBDI is a working space vector. For I=1,2,...,N, the element XBDI(I) is */
            /*       set to -1.0, 0.0, or 1.0, the value being nonzero if and only if the */
            /*       I-th variable has become fixed at a bound, the bound being SL(I) or */
            /*       SU(I) in the case XBDI(I)=-1.0 or XBDI(I)=1.0, respectively. This */
            /*       information is accumulated during the construction of XNEW. */
            /*     The arrays S, HS and HRED are also used for working space. They hold the */
            /*       current search direction, and the changes in the gradient of Q along S */
            /*       and the reduced D, respectively, where the reduced D is the same as D, */
            /*       except that the components of the fixed variables are zero. */
            /*     DSQ will be set to the square of the length of XNEW-XOPT. */
            /*     CRVMIN is set to zero if D reaches the trust region boundary. Otherwise */
            /*       it is set to the least curvature of H that occurs in the conjugate */
            /*       gradient searches that are not restricted by any constraints. The */
            /*       value CRVMIN=-1.0D0 is set, however, if all of these searches are */
            /*       constrained. */

            /*     A version of the truncated conjugate gradient is applied. If a line */
            /*     search is restricted by a constraint, then the procedure is restarted, */
            /*     the values of the variables that are at their bounds being fixed. If */
            /*     the trust region boundary is reached, then further changes may be made */
            /*     to D, each one being in the two dimensional space that is spanned */
            /*     by the current D and the gradient of Q at XOPT+D, staying on the trust */
            /*     region boundary. Termination occurs when the reduction in Q seems to */
            /*     be close to the greatest reduction that can be achieved. */

            /*     Set some constants. */

            /* Parameter adjustments */
            xpt_dim1 = npt;
            xpt_offset = 1 + xpt_dim1;
            xpt -= xpt_offset;
            --xopt;
            --gopt;
            --hq;
            --pq;
            --sl;
            --su;
            --xnew;
            --d__;
            --gnew;
            --xbdi;
            --s;
            --hs;
            --hred;

            /* Function Body */
            half = .5;
            one = 1.;
            onemin = -1.;
            zero = 0.;

            /*     The sign of GOPT(I) gives the sign of the change to the I-th variable */
            /*     that will reduce Q from its value at XOPT. Thus XBDI(I) shows whether */
            /*     or not to fix the I-th variable at one of its bounds initially, with */
            /*     NACT being set to the number of fixed variables. D and GNEW are also */
            /*     set for the first iteration. DELSQ is the upper bound on the sum of */
            /*     squares of the free variables. QRED is the reduction in Q so far. */

            iterc = 0;
            nact = 0;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                xbdi[i__] = zero;
                if (xopt[i__] <= sl[i__]) {
                    if (gopt[i__] >= zero) {
                        xbdi[i__] = onemin;
                    }
                } else if (xopt[i__] >= su[i__]) {
                    if (gopt[i__] <= zero) {
                        xbdi[i__] = one;
                    }
                }
                if (xbdi[i__] != zero) {
                    ++nact;
                }
                d__[i__] = zero;
                /* L10: */
                gnew[i__] = gopt[i__];
            }
            delsq = delta * delta;
            qred = zero;
            *crvmin = onemin;

            /*     Set the next search direction of the conjugate gradient method. It is */
            /*     the steepest descent direction initially and when the iterations are */
            /*     restarted because a variable has just been fixed by a bound, and of */
            /*     course the components of the fixed variables are zero. ITERMAX is an */
            /*     upper bound on the indices of the conjugate gradient iterations. */

L20:
            beta = zero;
L30:
            stepsq = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (xbdi[i__] != zero) {
                    s[i__] = zero;
                } else if (beta == zero) {
                    s[i__] = -gnew[i__];
                } else {
                    s[i__] = beta * s[i__] - gnew[i__];
                }
                /* L40: */
                /* Computing 2nd power */
                d__1 = s[i__];
                stepsq += d__1 * d__1;
            }
            if (stepsq == zero) {
                goto L190;
            }
            if (beta == zero) {
                gredsq = stepsq;
                itermax = iterc + n - nact;
            }
            if (gredsq * delsq <= qred * 1e-4 * qred) {
                goto L190;
            }

            /*     Multiply the search direction by the second derivative matrix of Q and */
            /*     calculate some scalars for the choice of steplength. Then set BLEN to */
            /*     the length of the the step to the trust region boundary and STPLEN to */
            /*     the steplength, ignoring the simple bounds. */

            goto L210;
L50:
            resid = delsq;
            ds = zero;
            shs = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (xbdi[i__] == zero) {
                    /* Computing 2nd power */
                    d__1 = d__[i__];
                    resid -= d__1 * d__1;
                    ds += s[i__] * d__[i__];
                    shs += s[i__] * hs[i__];
                }
                /* L60: */
            }
            if (resid <= zero) {
                goto L90;
            }
            temp = std::sqrt(stepsq * resid + ds * ds);
            if (ds < zero) {
                blen = (temp - ds) / stepsq;
            } else {
                blen = resid / (temp + ds);
            }
            stplen = blen;
            if (shs > zero) {
                /* Computing MIN */
                d__1 = blen, d__2 = gredsq / shs;
                stplen = std::min(d__1,d__2);
            }

            /*     Reduce STPLEN if necessary in order to preserve the simple bounds, */
            /*     letting IACT be the index of the new constrained variable. */

            iact = 0;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (s[i__] != zero) {
                    xsum = xopt[i__] + d__[i__];
                    if (s[i__] > zero) {
                        temp = (su[i__] - xsum) / s[i__];
                    } else {
                        temp = (sl[i__] - xsum) / s[i__];
                    }
                    if (temp < stplen) {
                        stplen = temp;
                        iact = i__;
                    }
                }
                /* L70: */
            }

            /*     Update CRVMIN, GNEW and D. Set SDEC to the decrease that occurs in Q. */

            sdec = zero;
            if (stplen > zero) {
                ++iterc;
                temp = shs / stepsq;
                if (iact == 0 && temp > zero) {
                    *crvmin = std::min(*crvmin,temp);
                    if (*crvmin == onemin) {
                        *crvmin = temp;
                    }
                }
                ggsav = gredsq;
                gredsq = zero;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    gnew[i__] += stplen * hs[i__];
                    if (xbdi[i__] == zero) {
                        /* Computing 2nd power */
                        d__1 = gnew[i__];
                        gredsq += d__1 * d__1;
                    }
                    /* L80: */
                    d__[i__] += stplen * s[i__];
                }
                /* Computing MAX */
                d__1 = stplen * (ggsav - half * stplen * shs);
                sdec = std::max(d__1,zero);
                qred += sdec;
            }

            /*     Restart the conjugate gradient method if it has hit a new bound. */

            if (iact > 0) {
                ++nact;
                xbdi[iact] = one;
                if (s[iact] < zero) {
                    xbdi[iact] = onemin;
                }
                /* Computing 2nd power */
                d__1 = d__[iact];
                delsq -= d__1 * d__1;
                if (delsq <= zero) {
                    goto L90;
                }
                goto L20;
            }

            /*     If STPLEN is less than BLEN, then either apply another conjugate */
            /*     gradient iteration or RETURN. */

            if (stplen < blen) {
                if (iterc == itermax) {
                    goto L190;
                }
                if (sdec <= qred * .01) {
                    goto L190;
                }
                beta = gredsq / ggsav;
                goto L30;
            }
L90:
            *crvmin = zero;

            /*     Prepare for the alternative iteration by calculating some scalars */
            /*     and by multiplying the reduced D by the second derivative matrix of */
            /*     Q, where S holds the reduced D in the call of GGMULT. */

L100:
            if (nact >= n - 1) {
                goto L190;
            }
            dredsq = zero;
            dredg = zero;
            gredsq = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (xbdi[i__] == zero) {
                    /* Computing 2nd power */
                    d__1 = d__[i__];
                    dredsq += d__1 * d__1;
                    dredg += d__[i__] * gnew[i__];
                    /* Computing 2nd power */
                    d__1 = gnew[i__];
                    gredsq += d__1 * d__1;
                    s[i__] = d__[i__];
                } else {
                    s[i__] = zero;
                }
                /* L110: */
            }
            itcsav = iterc;
            goto L210;

            /*     Let the search direction S be a linear combination of the reduced D */
            /*     and the reduced G that is orthogonal to the reduced D. */

L120:
            ++iterc;
            temp = gredsq * dredsq - dredg * dredg;
            if (temp <= qred * 1e-4 * qred) {
                goto L190;
            }
            temp = std::sqrt(temp);
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (xbdi[i__] == zero) {
                    s[i__] = (dredg * d__[i__] - dredsq * gnew[i__]) / temp;
                } else {
                    s[i__] = zero;
                }
                /* L130: */
            }
            sredg = -temp;

            /*     By considering the simple bounds on the variables, calculate an upper */
            /*     bound on the tangent of half the angle of the alternative iteration, */
            /*     namely ANGBD, except that, if already a free variable has reached a */
            /*     bound, there is a branch back to label 100 after fixing that variable. */

            angbd = one;
            iact = 0;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (xbdi[i__] == zero) {
                    tempa = xopt[i__] + d__[i__] - sl[i__];
                    tempb = su[i__] - xopt[i__] - d__[i__];
                    if (tempa <= zero) {
                        ++nact;
                        xbdi[i__] = onemin;
                        goto L100;
                    } else if (tempb <= zero) {
                        ++nact;
                        xbdi[i__] = one;
                        goto L100;
                    }
                    /* Computing 2nd power */
                    d__1 = d__[i__];
                    /* Computing 2nd power */
                    d__2 = s[i__];
                    ssq = d__1 * d__1 + d__2 * d__2;
                    /* Computing 2nd power */
                    d__1 = xopt[i__] - sl[i__];
                    temp = ssq - d__1 * d__1;
                    if (temp > zero) {
                        temp = std::sqrt(temp) - s[i__];
                        if (angbd * temp > tempa) {
                            angbd = tempa / temp;
                            iact = i__;
                            xsav = onemin;
                        }
                    }
                    /* Computing 2nd power */
                    d__1 = su[i__] - xopt[i__];
                    temp = ssq - d__1 * d__1;
                    if (temp > zero) {
                        temp = std::sqrt(temp) + s[i__];
                        if (angbd * temp > tempb) {
                            angbd = tempb / temp;
                            iact = i__;
                            xsav = one;
                        }
                    }
                }
                /* L140: */
            }

            /*     Calculate HHD and some curvatures for the alternative iteration. */

            goto L210;
L150:
            shs = zero;
            dhs = zero;
            dhd = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                if (xbdi[i__] == zero) {
                    shs += s[i__] * hs[i__];
                    dhs += d__[i__] * hs[i__];
                    dhd += d__[i__] * hred[i__];
                }
                /* L160: */
            }

            /*     Seek the greatest reduction in Q for a range of equally spaced values */
            /*     of ANGT in [0,ANGBD], where ANGT is the tangent of half the angle of */
            /*     the alternative iteration. */

            redmax = zero;
            isav = 0;
            redsav = zero;
            iu = (integer) (angbd * 17. + 3.1);
            i__1 = iu;
            for (i__ = 1; i__ <= i__1; ++i__) {
                angt = angbd * (doublereal) i__ / (doublereal) iu;
                sth = (angt + angt) / (one + angt * angt);
                temp = shs + angt * (angt * dhd - dhs - dhs);
                rednew = sth * (angt * dredg - sredg - half * sth * temp);
                if (rednew > redmax) {
                    redmax = rednew;
                    isav = i__;
                    rdprev = redsav;
                } else if (i__ == isav + 1) {
                    rdnext = rednew;
                }
                /* L170: */
                redsav = rednew;
            }

            /*     Return if the reduction is zero. Otherwise, set the sine and cosine */
            /*     of the angle of the alternative iteration, and calculate SDEC. */

            if (isav == 0) {
                goto L190;
            }
            if (isav < iu) {
                temp = (rdnext - rdprev) / (redmax + redmax - rdprev - rdnext);
                angt = angbd * ((doublereal) isav + half * temp) / (doublereal) iu;
            }
            cth = (one - angt * angt) / (one + angt * angt);
            sth = (angt + angt) / (one + angt * angt);
            temp = shs + angt * (angt * dhd - dhs - dhs);
            sdec = sth * (angt * dredg - sredg - half * sth * temp);
            if (sdec <= zero) {
                goto L190;
            }

            /*     Update GNEW, D and HRED. If the angle of the alternative iteration */
            /*     is restricted by a bound on a free variable, that variable is fixed */
            /*     at the bound. */

            dredg = zero;
            gredsq = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                gnew[i__] = gnew[i__] + (cth - one) * hred[i__] + sth * hs[i__];
                if (xbdi[i__] == zero) {
                    d__[i__] = cth * d__[i__] + sth * s[i__];
                    dredg += d__[i__] * gnew[i__];
                    /* Computing 2nd power */
                    d__1 = gnew[i__];
                    gredsq += d__1 * d__1;
                }
                /* L180: */
                hred[i__] = cth * hred[i__] + sth * hs[i__];
            }
            qred += sdec;
            if (iact > 0 && isav == iu) {
                ++nact;
                xbdi[iact] = xsav;
                goto L100;
            }

            /*     If SDEC is sufficiently small, then RETURN after setting XNEW to */
            /*     XOPT+D, giving careful attention to the bounds. */

            if (sdec > qred * .01) {
                goto L120;
            }
L190:
            *dsq = zero;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                /* Computing MAX */
                /* Computing MIN */
                d__3 = xopt[i__] + d__[i__], d__4 = su[i__];
                d__1 = std::min(d__3,d__4), d__2 = sl[i__];
                xnew[i__] = std::max(d__1,d__2);
                if (xbdi[i__] == onemin) {
                    xnew[i__] = sl[i__];
                }
                if (xbdi[i__] == one) {
                    xnew[i__] = su[i__];
                }
                d__[i__] = xnew[i__] - xopt[i__];
                /* L200: */
                /* Computing 2nd power */
                d__1 = d__[i__];
                *dsq += d__1 * d__1;
            }
            return;
            /*     The following instructions multiply the current S-vector by the second */
            /*     derivative matrix of the quadratic model, putting the product in HS. */
            /*     They are reached from three different parts of the software above and */
            /*     they can be regarded as an external subroutine. */

L210:
            ih = 0;
            i__1 = n;
            for (j = 1; j <= i__1; ++j) {
                hs[j] = zero;
                i__2 = j;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    ++ih;
                    if (i__ < j) {
                        hs[j] += hq[ih] * s[i__];
                    }
                    /* L220: */
                    hs[i__] += hq[ih] * s[j];
                }
            }
            i__2 = npt;
            for (k = 1; k <= i__2; ++k) {
                if (pq[k] != zero) {
                    temp = zero;
                    i__1 = n;
                    for (j = 1; j <= i__1; ++j) {
                        /* L230: */
                        temp += xpt[k + j * xpt_dim1] * s[j];
                    }
                    temp *= pq[k];
                    i__1 = n;
                    for (i__ = 1; i__ <= i__1; ++i__) {
                        /* L240: */
                        hs[i__] += temp * xpt[k + i__ * xpt_dim1];
                    }
                }
                /* L250: */
            }
            if (*crvmin != zero) {
                goto L50;
            }
            if (iterc > itcsav) {
                goto L150;
            }
            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__) {
                /* L260: */
                hred[i__] = hs[i__];
            }
            goto L120;
        } /* trsbox_ */

    // ----------------------------------------------------------------------------------------

        void update_(
            const integer n,
            const integer npt,
            doublereal *bmat, 
            doublereal *zmat,
            const integer ndim,
            doublereal *vlag,
            const doublereal beta, 
            const doublereal denom,
            const integer knew,
            doublereal *w
        ) const
        {
            /* System generated locals */
            integer bmat_dim1, bmat_offset, zmat_dim1, zmat_offset, i__1, i__2;
            doublereal d__1, d__2, d__3;

            /* Local variables */
            integer i__, j, k, jp;
            doublereal one, tau, temp;
            integer nptm;
            doublereal zero, alpha, tempa, tempb, ztest;


            /*     The arrays BMAT and ZMAT are updated, as required by the new position */
            /*     of the interpolation point that has the index KNEW. The vector VLAG has */
            /*     N+NPT components, set on entry to the first NPT and last N components */
            /*     of the product Hw in equation (4.11) of the Powell (2006) paper on */
            /*     NEWUOA. Further, BETA is set on entry to the value of the parameter */
            /*     with that name, and DENOM is set to the denominator of the updating */
            /*     formula. Elements of ZMAT may be treated as zero if their moduli are */
            /*     at most ZTEST. The first NDIM elements of W are used for working space. */

            /*     Set some constants. */

            /* Parameter adjustments */
            zmat_dim1 = npt;
            zmat_offset = 1 + zmat_dim1;
            zmat -= zmat_offset;
            bmat_dim1 = ndim;
            bmat_offset = 1 + bmat_dim1;
            bmat -= bmat_offset;
            --vlag;
            --w;

            /* Function Body */
            one = 1.;
            zero = 0.;
            nptm = npt - n - 1;
            ztest = zero;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                i__2 = nptm;
                for (j = 1; j <= i__2; ++j) {
                    /* L10: */
                    /* Computing MAX */
                    d__2 = ztest, d__3 = (d__1 = zmat[k + j * zmat_dim1], std::abs(d__1));
                    ztest = std::max(d__2,d__3);
                }
            }
            ztest *= 1e-20;

            /*     Apply the rotations that put zeros in the KNEW-th row of ZMAT. */

            i__2 = nptm;
            for (j = 2; j <= i__2; ++j) {
                if ((d__1 = zmat[knew + j * zmat_dim1], std::abs(d__1)) > ztest) {
                    /* Computing 2nd power */
                    d__1 = zmat[knew + zmat_dim1];
                    /* Computing 2nd power */
                    d__2 = zmat[knew + j * zmat_dim1];
                    temp = std::sqrt(d__1 * d__1 + d__2 * d__2);
                    tempa = zmat[knew + zmat_dim1] / temp;
                    tempb = zmat[knew + j * zmat_dim1] / temp;
                    i__1 = npt;
                    for (i__ = 1; i__ <= i__1; ++i__) {
                        temp = tempa * zmat[i__ + zmat_dim1] + tempb * zmat[i__ + j * 
                            zmat_dim1];
                        zmat[i__ + j * zmat_dim1] = tempa * zmat[i__ + j * zmat_dim1] 
                            - tempb * zmat[i__ + zmat_dim1];
                        /* L20: */
                        zmat[i__ + zmat_dim1] = temp;
                    }
                }
                zmat[knew + j * zmat_dim1] = zero;
                /* L30: */
            }

            /*     Put the first NPT components of the KNEW-th column of HLAG into W, */
            /*     and calculate the parameters of the updating formula. */

            i__2 = npt;
            for (i__ = 1; i__ <= i__2; ++i__) {
                w[i__] = zmat[knew + zmat_dim1] * zmat[i__ + zmat_dim1];
                /* L40: */
            }
            alpha = w[knew];
            tau = vlag[knew];
            vlag[knew] -= one;

            /*     Complete the updating of ZMAT. */

            temp = std::sqrt(denom);
            tempb = zmat[knew + zmat_dim1] / temp;
            tempa = tau / temp;
            i__2 = npt;
            for (i__ = 1; i__ <= i__2; ++i__) {
                /* L50: */
                zmat[i__ + zmat_dim1] = tempa * zmat[i__ + zmat_dim1] - tempb * vlag[
                    i__];
            }

            /*     Finally, update the matrix BMAT. */

            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                jp = npt + j;
                w[jp] = bmat[knew + j * bmat_dim1];
                tempa = (alpha * vlag[jp] - tau * w[jp]) / denom;
                tempb = (-(beta) * w[jp] - tau * vlag[jp]) / denom;
                i__1 = jp;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    bmat[i__ + j * bmat_dim1] = bmat[i__ + j * bmat_dim1] + tempa * 
                        vlag[i__] + tempb * w[i__];
                    if (i__ > npt) {
                        bmat[jp + (i__ - npt) * bmat_dim1] = bmat[i__ + j * 
                            bmat_dim1];
                    }
                    /* L60: */
                }
            }
        } /* update_ */
    };

// ----------------------------------------------------------------------------------------

    template <
        typename funct,
        typename T, 
        typename U
        >
    double find_min_bobyqa (
        const funct& f,
        T& x,
        long npt,
        const U& x_lower,
        const U& x_upper,
        const double rho_begin,
        const double rho_end,
        const long max_f_evals
    ) 
    {
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        // check the requirements.  Also split the assert up so that the error message isn't huge.
        DLIB_CASSERT(is_col_vector(x) && is_col_vector(x_lower) && is_col_vector(x_upper) &&
                    x.size() == x_lower.size() && x_lower.size() == x_upper.size() &&
                    x.size() > 1 && max_f_evals > 1,
            "\tvoid find_min_bobyqa()"
            << "\n\t Invalid arguments have been given to this function"
            << "\n\t is_col_vector(x):       " << is_col_vector(x) 
            << "\n\t is_col_vector(x_lower): " << is_col_vector(x_lower) 
            << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper) 
            << "\n\t x.size():               " << x.size()
            << "\n\t x_lower.size():         " << x_lower.size()
            << "\n\t x_upper.size():         " << x_upper.size()
            << "\n\t max_f_evals:            " << max_f_evals
        );

        DLIB_CASSERT(x.size() + 2 <= npt && npt <= (x.size()+1)*(x.size()+2)/2 &&
                    0 < rho_end && rho_end < rho_begin &&
                    min(x_upper - x_lower) > 2*rho_begin &&
                    min(x - x_lower) >= 0 && min(x_upper - x) >= 0,
            "\tvoid find_min_bobyqa()"
            << "\n\t Invalid arguments have been given to this function"
            << "\n\t ntp in valid range: " << (x.size() + 2 <= npt && npt <= (x.size()+1)*(x.size()+2)/2)
            << "\n\t npt:                " << npt 
            << "\n\t rho_begin:          " << rho_begin 
            << "\n\t rho_end:            " << rho_end
            << "\n\t min(x_upper - x_lower) > 2*rho_begin:           " << (min(x_upper - x_lower) > 2*rho_begin)
            << "\n\t min(x - x_lower) >= 0 && min(x_upper - x) >= 0: " << (min(x - x_lower) >= 0 && min(x_upper - x) >= 0)
        );


        bobyqa_implementation impl;
        return impl.find_min(f, x, npt, x_lower, x_upper, rho_begin, rho_end, max_f_evals);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename funct,
        typename T, 
        typename U
        >
    double find_max_bobyqa (
        const funct& f,
        T& x,
        long npt,
        const U& x_lower,
        const U& x_upper,
        const double rho_begin,
        const double rho_end,
        const long max_f_evals
    ) 
    {
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        return -find_min_bobyqa(negate_function(f), x, npt, x_lower, x_upper, rho_begin, rho_end, max_f_evals);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_OPTIMIZATIOn_BOBYQA_Hh_