This file is indexed.

/usr/include/dlib/optimization/optimization_abstract.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_OPTIMIZATIOn_ABSTRACT_
#ifdef DLIB_OPTIMIZATIOn_ABSTRACT_

#include <cmath>
#include <limits>
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
#include "optimization_search_strategies_abstract.h"
#include "optimization_stop_strategies_abstract.h"
#include "optimization_line_search_abstract.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                    Functions that transform other functions  
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename funct
        >
    class central_differences;
    /*!
        This is a function object that represents the derivative of some other
        function. 

        Note that if funct is a function of a double then the derivative of 
        funct is just a double but if funct is a function of a dlib::matrix (i.e. a
        function of many variables) then its derivative is a gradient vector (a column
        vector in particular).
    !*/

    template <
        typename funct
        >
    const central_differences<funct> derivative(
        const funct& f, 
        double eps
    );
    /*!
        requires
            - f == a function that returns a scalar
            - f must have one of the following forms:
                - double f(double)
                - double f(dlib::matrix)  (where the matrix is a column vector)
                - double f(T, dlib::matrix)  (where the matrix is a column vector.  In 
                  this case the derivative of f is taken with respect to the second argument.)
            - eps > 0
        ensures
            - returns a function that represents the derivative of the function f.  It
              is approximated numerically by:
                  (f(x+eps)-f(x-eps))/(2*eps)
    !*/

    template <
        typename funct
        >
    const central_differences<funct> derivative(
        const funct& f
    );
    /*!
        ensures
            - returns derivative(f, 1e-7)
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename funct, 
        typename EXP1, 
        typename EXP2
        >
    clamped_function_object<funct,EXP1,EXP2> clamp_function (
        const funct& f,
        const matrix_exp<EXP1>& x_lower,
        const matrix_exp<EXP2>& x_upper 
    );
    /*!
        requires
            - f == a function that takes a matrix and returns a scalar value.  Moreover, f
              must be capable of taking in matrices with the same dimensions as x_lower and
              x_upper.  So f(x_lower) must be a valid expression that evaluates to a scalar
              value.
            - x_lower.nr() == x_upper.nr() && x_lower.nc() == x_upper.nc()
              (i.e. x_lower and x_upper must have the same dimensions)
            - x_lower and x_upper must contain the same type of elements.
        ensures
            - returns a function object that represents the function g(x) where
              g(x) == f(clamp(x,x_lower,x_upper))
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                    Functions that perform unconstrained optimization 
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_min (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x, 
        double min_f
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - der(x) must be a valid expression that evaluates to the derivative of f() at x.
            - is_col_vector(x) == true
        ensures
            - Performs an unconstrained minimization of the function f() using the given
              search_strategy and starting from the initial point x.  
            - The function is optimized until stop_strategy decides that an acceptable 
              point has been found or f(#x) < min_f.
            - #x == the value of x that was found to minimize f()
            - returns f(#x). 
            - When this function makes calls to f() and der() it always does so by
              first calling f() and then calling der().  That is, these two functions
              are always called in pairs with f() being called first and then der()
              being called second.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_max (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x, 
        double max_f
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - der(x) must be a valid expression that evaluates to the derivative of f() at x.
            - is_col_vector(x) == true
        ensures
            - Performs an unconstrained maximization of the function f() using the given
              search_strategy and starting from the initial point x.  
            - The function is optimized until stop_strategy decides that an acceptable 
              point has been found or f(#x) > max_f.
            - #x == the value of x that was found to maximize f()
            - returns f(#x). 
            - When this function makes calls to f() and der() it always does so by
              first calling f() and then calling der().  That is, these two functions
              are always called in pairs with f() being called first and then der()
              being called second.
            - Note that this function solves the maximization problem by converting it 
              into a minimization problem.  Therefore, the values of f and its derivative
              reported to the stopping strategy will be negated.  That is, stop_strategy
              will see -f() and -der().  All this really means is that the status messages
              from a stopping strategy in verbose mode will display a negated objective
              value.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct,
        typename T
        >
    double find_min_using_approximate_derivatives (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f,
        T& x,
        double min_f,
        double derivative_eps = 1e-7
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - is_col_vector(x) == true
            - derivative_eps > 0 
        ensures
            - Performs an unconstrained minimization of the function f() using the given
              search_strategy and starting from the initial point x.  
            - The function is optimized until stop_strategy decides that an acceptable 
              point has been found or f(#x) < min_f.
            - #x == the value of x that was found to minimize f()
            - returns f(#x). 
            - Uses the dlib::derivative(f,derivative_eps) function to compute gradient
              information.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct,
        typename T
        >
    double find_max_using_approximate_derivatives (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f,
        T& x,
        double max_f,
        double derivative_eps = 1e-7
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - is_col_vector(x) == true
            - derivative_eps > 0 
        ensures
            - Performs an unconstrained maximization of the function f() using the given
              search_strategy and starting from the initial point x.  
            - The function is optimized until stop_strategy decides that an acceptable 
              point has been found or f(#x) > max_f.
            - #x == the value of x that was found to maximize f()
            - returns f(#x). 
            - Uses the dlib::derivative(f,derivative_eps) function to compute gradient
              information.
            - Note that this function solves the maximization problem by converting it 
              into a minimization problem.  Therefore, the values of f and its derivative
              reported to the stopping strategy will be negated.  That is, stop_strategy
              will see -f() and -der().  All this really means is that the status messages
              from a stopping strategy in verbose mode will display a negated objective
              value.
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                  Functions that perform box constrained optimization 
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T,
        typename EXP1,
        typename EXP2
        >
    double find_min_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        const matrix_exp<EXP1>& x_lower,
        const matrix_exp<EXP2>& x_upper
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - der(x) must be a valid expression that evaluates to the derivative of f() at x.
            - is_col_vector(x) == true
            - is_col_vector(x_lower) == true
            - is_col_vector(x_upper) == true
            - x.size() == x_lower.size() == x_upper.size()
              (i.e. x, x_lower, and x_upper need to all be column vectors of the same dimensionality)
            - min(x_upper-x_lower) > 0
              (i.e. x_upper must contain upper bounds relative to x_lower)
        ensures
            - Performs a box constrained minimization of the function f() using the given
              search_strategy and starting from the initial point x.  That is, we try to
              find the x value that minimizes f(x) but is also within the box constraints 
              specified by x_lower and x_upper.  That is, we ensure that #x satisfies: 
                - min(#x - x_lower) >= 0 && min(x_upper - #x) >= 0
            - This function uses a backtracking line search along with a gradient projection
              step to handle the box constraints.
            - The function is optimized until stop_strategy decides that an acceptable
              point has been found. 
            - #x == the value of x that was found to minimize f() within the given box
              constraints.
            - returns f(#x). 
            - The last call to f() will be made with f(#x).  
            - When calling f() and der(), the input passed to them will always be inside
              the box constraints defined by x_lower and x_upper.
            - When calling der(x), it will always be the case that the last call to f() was
              made with the same x value.  This means that you can reuse any intermediate
              results from the previous call to f(x) inside der(x) rather than recomputing
              them inside der(x).
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_min_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        const double x_lower,
        const double x_upper
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - der(x) must be a valid expression that evaluates to the derivative of f() at x.
            - is_col_vector(x) == true
            - x_lower < x_upper
        ensures
            - This function is identical to find_min_box_constrained() as defined above
              except that it takes x_lower and x_upper as doubles rather than column
              vectors.  In this case, all variables have the same lower bound of x_lower
              and similarly have the same upper bound of x_upper.  Therefore, this is just
              a convenience function for calling find_max_box_constrained() when all
              variables have the same bound constraints.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T,
        typename EXP1,
        typename EXP2
        >
    double find_max_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        const matrix_exp<EXP1>& x_lower,
        const matrix_exp<EXP2>& x_upper
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - der(x) must be a valid expression that evaluates to the derivative of f() at x.
            - is_col_vector(x) == true
            - is_col_vector(x_lower) == true
            - is_col_vector(x_upper) == true
            - x.size() == x_lower.size() == x_upper.size()
              (i.e. x, x_lower, and x_upper need to all be column vectors of the same dimensionality)
            - min(x_upper-x_lower) > 0
              (i.e. x_upper must contain upper bounds relative to x_lower)
        ensures
            - Performs a box constrained maximization of the function f() using the given
              search_strategy and starting from the initial point x.  That is, we try to
              find the x value that maximizes f(x) but is also within the box constraints 
              specified by x_lower and x_upper.  That is, we ensure that #x satisfies: 
                - min(#x - x_lower) >= 0 && min(x_upper - #x) >= 0
            - This function uses a backtracking line search along with a gradient projection
              step to handle the box constraints.
            - The function is optimized until stop_strategy decides that an acceptable
              point has been found. 
            - #x == the value of x that was found to maximize f() within the given box
              constraints.
            - returns f(#x). 
            - The last call to f() will be made with f(#x).  
            - When calling f() and der(), the input passed to them will always be inside
              the box constraints defined by x_lower and x_upper.
            - When calling der(x), it will always be the case that the last call to f() was
              made with the same x value.  This means that you can reuse any intermediate
              results from the previous call to f(x) inside der(x) rather than recomputing
              them inside der(x).
            - Note that this function solves the maximization problem by converting it 
              into a minimization problem.  Therefore, the values of f and its derivative
              reported to the stopping strategy will be negated.  That is, stop_strategy
              will see -f() and -der().  All this really means is that the status messages
              from a stopping strategy in verbose mode will display a negated objective
              value.
    !*/

// ----------------------------------------------------------------------------------------
    
    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_max_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        const double x_lower,
        const double x_upper
    );
    /*!
        requires
            - search_strategy == an object that defines a search strategy such as one 
              of the objects from dlib/optimization/optimization_search_strategies_abstract.h
            - stop_strategy == an object that defines a stop strategy such as one of 
              the objects from dlib/optimization/optimization_stop_strategies_abstract.h
            - f(x) must be a valid expression that evaluates to a double
            - der(x) must be a valid expression that evaluates to the derivative of f() at x.
            - is_col_vector(x) == true
            - x_lower < x_upper
        ensures
            - This function is identical to find_max_box_constrained() as defined above
              except that it takes x_lower and x_upper as doubles rather than column
              vectors.  In this case, all variables have the same lower bound of x_lower
              and similarly have the same upper bound of x_upper.  Therefore, this is just
              a convenience function for calling find_max_box_constrained() when all
              variables have the same bound constraints.
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_OPTIMIZATIOn_ABSTRACT_