This file is indexed.

/usr/include/dlib/optimization/optimization.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_OPTIMIZATIOn_H_
#define DLIB_OPTIMIZATIOn_H_

#include <cmath>
#include <limits>
#include "optimization_abstract.h"
#include "optimization_search_strategies.h"
#include "optimization_stop_strategies.h"
#include "optimization_line_search.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                    Functions that transform other functions  
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <typename funct>
    class central_differences
    {
    public:
        central_differences(const funct& f_, double eps_ = 1e-7) : f(f_), eps(eps_){}

        template <typename T>
        typename T::matrix_type operator()(const T& x) const
        {
            // T must be some sort of dlib matrix 
            COMPILE_TIME_ASSERT(is_matrix<T>::value);

            typename T::matrix_type der(x.size());
            typename T::matrix_type e(x);
            for (long i = 0; i < x.size(); ++i)
            {
                const double old_val = e(i);

                e(i) += eps;
                const double delta_plus = f(e);
                e(i) = old_val - eps;
                const double delta_minus = f(e);

                der(i) = (delta_plus - delta_minus)/(2*eps);

                // and finally restore the old value of this element
                e(i) = old_val;
            }

            return der;
        }

        template <typename T, typename U>
        typename U::matrix_type operator()(const T& item, const U& x) const
        {
            // U must be some sort of dlib matrix 
            COMPILE_TIME_ASSERT(is_matrix<U>::value);

            typename U::matrix_type der(x.size());
            typename U::matrix_type e(x);
            for (long i = 0; i < x.size(); ++i)
            {
                const double old_val = e(i);

                e(i) += eps;
                const double delta_plus = f(item,e);
                e(i) = old_val - eps;
                const double delta_minus = f(item,e);

                der(i) = (delta_plus - delta_minus)/(2*eps);

                // and finally restore the old value of this element
                e(i) = old_val;
            }

            return der;
        }
        

        double operator()(const double& x) const
        {
            return (f(x+eps)-f(x-eps))/(2*eps);
        }

    private:
        const funct& f;
        const double eps;
    };

    template <typename funct>
    const central_differences<funct> derivative(const funct& f) { return central_differences<funct>(f); }
    template <typename funct>
    const central_differences<funct> derivative(const funct& f, double eps) 
    { 
        DLIB_ASSERT (
            eps > 0,
            "\tcentral_differences derivative(f,eps)"
            << "\n\tYou must give an epsilon > 0"
            << "\n\teps:     " << eps 
        );
        return central_differences<funct>(f,eps); 
    }

// ----------------------------------------------------------------------------------------

    template <typename funct, typename EXP1, typename EXP2>
    struct clamped_function_object
    {
        clamped_function_object(
            const funct& f_,
            const matrix_exp<EXP1>& x_lower_,
            const matrix_exp<EXP2>& x_upper_ 
        ) : f(f_), x_lower(x_lower_), x_upper(x_upper_)
        {
        }

        template <typename T>
        double operator() (
            const T& x
        ) const
        {
            return f(clamp(x,x_lower,x_upper));
        }
        
        const funct& f;
        const matrix_exp<EXP1>& x_lower;
        const matrix_exp<EXP2>& x_upper; 
    };

    template <typename funct, typename EXP1, typename EXP2>
    clamped_function_object<funct,EXP1,EXP2> clamp_function(
        const funct& f,
        const matrix_exp<EXP1>& x_lower,
        const matrix_exp<EXP2>& x_upper 
    ) { return clamped_function_object<funct,EXP1,EXP2>(f,x_lower,x_upper); }

// ----------------------------------------------------------------------------------------

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                    Functions that perform unconstrained optimization 
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_min (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x, 
        double min_f
    )
    {
        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        DLIB_CASSERT (
            is_col_vector(x),
            "\tdouble find_min()"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tx.nc():    " << x.nc()
        );


        T g, s;

        double f_value = f(x);
        g = der(x);

        if (!is_finite(f_value))
            throw error("The objective function generated non-finite outputs");
        if (!is_finite(g))
            throw error("The objective function generated non-finite outputs");

        while(stop_strategy.should_continue_search(x, f_value, g) && f_value > min_f)
        {
            s = search_strategy.get_next_direction(x, f_value, g);

            double alpha = line_search(
                        make_line_search_function(f,x,s, f_value),
                        f_value,
                        make_line_search_function(der,x,s, g),
                        dot(g,s), // compute initial gradient for the line search
                        search_strategy.get_wolfe_rho(), search_strategy.get_wolfe_sigma(), min_f,
                        search_strategy.get_max_line_search_iterations());

            // Take the search step indicated by the above line search
            x += alpha*s;

            if (!is_finite(f_value))
                throw error("The objective function generated non-finite outputs");
            if (!is_finite(g))
                throw error("The objective function generated non-finite outputs");
        }

        return f_value;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_max (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x, 
        double max_f
    )
    {
        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        DLIB_CASSERT (
            is_col_vector(x),
            "\tdouble find_max()"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tx.nc():    " << x.nc()
        );

        T g, s;

        // This function is basically just a copy of find_min() but with - put in the right places
        // to flip things around so that it ends up looking for the max rather than the min.

        double f_value = -f(x);
        g = -der(x);

        if (!is_finite(f_value))
            throw error("The objective function generated non-finite outputs");
        if (!is_finite(g))
            throw error("The objective function generated non-finite outputs");

        while(stop_strategy.should_continue_search(x, f_value, g) && f_value > -max_f)
        {
            s = search_strategy.get_next_direction(x, f_value, g);

            double alpha = line_search(
                        negate_function(make_line_search_function(f,x,s, f_value)),
                        f_value,
                        negate_function(make_line_search_function(der,x,s, g)),
                        dot(g,s), // compute initial gradient for the line search
                        search_strategy.get_wolfe_rho(), search_strategy.get_wolfe_sigma(), -max_f,
                        search_strategy.get_max_line_search_iterations()
                        );

            // Take the search step indicated by the above line search
            x += alpha*s;

            // Don't forget to negate these outputs from the line search since they are 
            // from the unnegated versions of f() and der()
            g *= -1;
            f_value *= -1;

            if (!is_finite(f_value))
                throw error("The objective function generated non-finite outputs");
            if (!is_finite(g))
                throw error("The objective function generated non-finite outputs");
        }

        return -f_value;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct,
        typename T
        >
    double find_min_using_approximate_derivatives (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f,
        T& x,
        double min_f,
        double derivative_eps = 1e-7
    )
    {
        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        DLIB_CASSERT (
            is_col_vector(x) && derivative_eps > 0,
            "\tdouble find_min_using_approximate_derivatives()"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tx.nc():         " << x.nc()
            << "\n\tderivative_eps: " << derivative_eps 
        );

        T g, s;

        double f_value = f(x);
        g = derivative(f,derivative_eps)(x);

        if (!is_finite(f_value))
            throw error("The objective function generated non-finite outputs");
        if (!is_finite(g))
            throw error("The objective function generated non-finite outputs");

        while(stop_strategy.should_continue_search(x, f_value, g) && f_value > min_f)
        {
            s = search_strategy.get_next_direction(x, f_value, g);

            double alpha = line_search(
                        make_line_search_function(f,x,s,f_value),
                        f_value,
                        derivative(make_line_search_function(f,x,s),derivative_eps),
                        dot(g,s),  // Sometimes the following line is a better way of determining the initial gradient. 
                        //derivative(make_line_search_function(f,x,s),derivative_eps)(0),
                        search_strategy.get_wolfe_rho(), search_strategy.get_wolfe_sigma(), min_f,
                        search_strategy.get_max_line_search_iterations()
                        );

            // Take the search step indicated by the above line search
            x += alpha*s;

            g = derivative(f,derivative_eps)(x);

            if (!is_finite(f_value))
                throw error("The objective function generated non-finite outputs");
            if (!is_finite(g))
                throw error("The objective function generated non-finite outputs");
        }

        return f_value;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct,
        typename T
        >
    double find_max_using_approximate_derivatives (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f,
        T& x,
        double max_f,
        double derivative_eps = 1e-7
    )
    {
        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        DLIB_CASSERT (
            is_col_vector(x) && derivative_eps > 0,
            "\tdouble find_max_using_approximate_derivatives()"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tx.nc():         " << x.nc()
            << "\n\tderivative_eps: " << derivative_eps 
        );

        // Just negate the necessary things and call the find_min version of this function.
        return -find_min_using_approximate_derivatives(
            search_strategy, 
            stop_strategy, 
            negate_function(f),
            x,
            -max_f,
            derivative_eps
        );
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                      Functions for box constrained optimization
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <typename T, typename U, typename V>
    T zero_bounded_variables (
        const double eps,
        T vect,
        const T& x,
        const T& gradient,
        const U& x_lower,
        const V& x_upper
    )
    {
        for (long i = 0; i < gradient.size(); ++i)
        {
            const double tol = eps*std::abs(x(i));
            // if x(i) is an active bound constraint
            if (x_lower(i)+tol >= x(i) && gradient(i) > 0)
                vect(i) = 0;
            else if (x_upper(i)-tol <= x(i) && gradient(i) < 0)
                vect(i) = 0;
        }
        return vect;
    }

// ----------------------------------------------------------------------------------------

    template <typename T, typename U, typename V>
    T gap_step_assign_bounded_variables (
        const double eps,
        T vect,
        const T& x,
        const T& gradient,
        const U& x_lower,
        const V& x_upper
    )
    {
        for (long i = 0; i < gradient.size(); ++i)
        {
            const double tol = eps*std::abs(x(i));
            // if x(i) is an active bound constraint then we should set it's search
            // direction such that a single step along the direction either does nothing or
            // closes the gap of size tol before hitting the bound exactly.
            if (x_lower(i)+tol >= x(i) && gradient(i) > 0)
                vect(i) = x_lower(i)-x(i);
            else if (x_upper(i)-tol <= x(i) && gradient(i) < 0)
                vect(i) = x_upper(i)-x(i);
        }
        return vect;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T,
        typename EXP1,
        typename EXP2
        >
    double find_min_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        const matrix_exp<EXP1>& x_lower,
        const matrix_exp<EXP2>& x_upper
    )
    {
        /*
            The implementation of this function is more or less based on the discussion in
            the paper Projected Newton-type Methods in Machine Learning by Mark Schmidt, et al.
        */

        // make sure the requires clause is not violated
        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        DLIB_CASSERT (
            is_col_vector(x) && is_col_vector(x_lower) && is_col_vector(x_upper) &&
            x.size() == x_lower.size() && x.size() == x_upper.size(),
            "\tdouble find_min_box_constrained()"
            << "\n\t The inputs to this function must be equal length column vectors."
            << "\n\t is_col_vector(x):       " << is_col_vector(x)
            << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
            << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
            << "\n\t x.size():               " << x.size()
            << "\n\t x_lower.size():         " << x_lower.size()
            << "\n\t x_upper.size():         " << x_upper.size()
        );
        DLIB_ASSERT (
            min(x_upper-x_lower) > 0,
            "\tdouble find_min_box_constrained()"
            << "\n\t You have to supply proper box constraints to this function."
            << "\n\r min(x_upper-x_lower): " << min(x_upper-x_lower)
        );


        T g, s;
        double f_value = f(x);
        g = der(x);

        if (!is_finite(f_value))
            throw error("The objective function generated non-finite outputs");
        if (!is_finite(g))
            throw error("The objective function generated non-finite outputs");

        // gap_eps determines how close we have to get to a bound constraint before we
        // start basically dropping it from the optimization and consider it to be an
        // active constraint.
        const double gap_eps = 1e-8;

        double last_alpha = 1;
        while(stop_strategy.should_continue_search(x, f_value, g))
        {
            s = search_strategy.get_next_direction(x, f_value, zero_bounded_variables(gap_eps, g, x, g, x_lower, x_upper));
            s = gap_step_assign_bounded_variables(gap_eps, s, x, g, x_lower, x_upper);

            double alpha = backtracking_line_search(
                        make_line_search_function(clamp_function(f,x_lower,x_upper), x, s, f_value),
                        f_value,
                        dot(g,s), // compute gradient for the line search
                        last_alpha, 
                        search_strategy.get_wolfe_rho(), 
                        search_strategy.get_max_line_search_iterations());

            // Do a trust region style thing for alpha.  The idea is that if we take a
            // small step then we are likely to take another small step.  So we reuse the
            // alpha from the last iteration unless the line search didn't shrink alpha at
            // all, in that case, we start with a bigger alpha next time.
            if (alpha == last_alpha)
                last_alpha = std::min(last_alpha*10,1.0);
            else
                last_alpha = alpha;

            // Take the search step indicated by the above line search
            x = clamp(x + alpha*s, x_lower, x_upper);
            g = der(x);

            if (!is_finite(f_value))
                throw error("The objective function generated non-finite outputs");
            if (!is_finite(g))
                throw error("The objective function generated non-finite outputs");
        }

        return f_value;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_min_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        double x_lower,
        double x_upper
    )
    {
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        typedef typename T::type scalar_type;
        return find_min_box_constrained(search_strategy,
                                        stop_strategy,
                                        f,
                                        der,
                                        x,
                                        uniform_matrix<scalar_type>(x.size(),1,x_lower),
                                        uniform_matrix<scalar_type>(x.size(),1,x_upper) );
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T,
        typename EXP1,
        typename EXP2
        >
    double find_max_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        const matrix_exp<EXP1>& x_lower,
        const matrix_exp<EXP2>& x_upper
    )
    {
        // make sure the requires clause is not violated
        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        DLIB_CASSERT (
            is_col_vector(x) && is_col_vector(x_lower) && is_col_vector(x_upper) &&
            x.size() == x_lower.size() && x.size() == x_upper.size(),
            "\tdouble find_max_box_constrained()"
            << "\n\t The inputs to this function must be equal length column vectors."
            << "\n\t is_col_vector(x):       " << is_col_vector(x)
            << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
            << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
            << "\n\t x.size():               " << x.size()
            << "\n\t x_lower.size():         " << x_lower.size()
            << "\n\t x_upper.size():         " << x_upper.size()
        );
        DLIB_ASSERT (
            min(x_upper-x_lower) > 0,
            "\tdouble find_max_box_constrained()"
            << "\n\t You have to supply proper box constraints to this function."
            << "\n\r min(x_upper-x_lower): " << min(x_upper-x_lower)
        );

        // This function is basically just a copy of find_min_box_constrained() but with - put 
        // in the right places to flip things around so that it ends up looking for the max
        // rather than the min.

        T g, s;
        double f_value = -f(x);
        g = -der(x);

        if (!is_finite(f_value))
            throw error("The objective function generated non-finite outputs");
        if (!is_finite(g))
            throw error("The objective function generated non-finite outputs");

        // gap_eps determines how close we have to get to a bound constraint before we
        // start basically dropping it from the optimization and consider it to be an
        // active constraint.
        const double gap_eps = 1e-8;

        double last_alpha = 1;
        while(stop_strategy.should_continue_search(x, f_value, g))
        {
            s = search_strategy.get_next_direction(x, f_value, zero_bounded_variables(gap_eps, g, x, g, x_lower, x_upper));
            s = gap_step_assign_bounded_variables(gap_eps, s, x, g, x_lower, x_upper);

            double alpha = backtracking_line_search(
                        negate_function(make_line_search_function(clamp_function(f,x_lower,x_upper), x, s, f_value)),
                        f_value,
                        dot(g,s), // compute gradient for the line search
                        last_alpha, 
                        search_strategy.get_wolfe_rho(), 
                        search_strategy.get_max_line_search_iterations());

            // Do a trust region style thing for alpha.  The idea is that if we take a
            // small step then we are likely to take another small step.  So we reuse the
            // alpha from the last iteration unless the line search didn't shrink alpha at
            // all, in that case, we start with a bigger alpha next time.
            if (alpha == last_alpha)
                last_alpha = std::min(last_alpha*10,1.0);
            else
                last_alpha = alpha;

            // Take the search step indicated by the above line search
            x = clamp(x + alpha*s, x_lower, x_upper);
            g = -der(x);

            // Don't forget to negate the output from the line search since it is  from the
            // unnegated version of f() 
            f_value *= -1;

            if (!is_finite(f_value))
                throw error("The objective function generated non-finite outputs");
            if (!is_finite(g))
                throw error("The objective function generated non-finite outputs");
        }

        return -f_value;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename search_strategy_type,
        typename stop_strategy_type,
        typename funct, 
        typename funct_der, 
        typename T
        >
    double find_max_box_constrained (
        search_strategy_type search_strategy,
        stop_strategy_type stop_strategy,
        const funct& f, 
        const funct_der& der, 
        T& x,
        double x_lower,
        double x_upper
    )
    {
        // The starting point (i.e. x) must be a column vector.  
        COMPILE_TIME_ASSERT(T::NC <= 1);

        typedef typename T::type scalar_type;
        return find_max_box_constrained(search_strategy,
                                        stop_strategy,
                                        f,
                                        der,
                                        x,
                                        uniform_matrix<scalar_type>(x.size(),1,x_lower),
                                        uniform_matrix<scalar_type>(x.size(),1,x_upper) );
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_OPTIMIZATIOn_H_