This file is indexed.

/usr/include/dlib/matrix/matrix_fft.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_FFt_Hh_
#define DLIB_FFt_Hh_

#include "matrix_fft_abstract.h"
#include "matrix_utilities.h"
#include "../hash.h"
#include "../algs.h"


// No using FFTW until it becomes thread safe!
#if 0
#ifdef DLIB_USE_FFTW
#include <fftw3.h>
#endif // DLIB_USE_FFTW
#endif

namespace dlib
{

// ----------------------------------------------------------------------------------------

    inline bool is_power_of_two (
        const unsigned long& value
    )
    {
        if (value == 0)
            return true;
        else
            return count_bits(value) == 1;
    }

// ----------------------------------------------------------------------------------------

    namespace impl
    {

    // ------------------------------------------------------------------------------------

        /*
            The next few functions related to doing FFTs are derived from Stefan
            Gustavson's (stegu@itn.liu.se) public domain 2D Fourier transformation code.
            The code has a long history, originally a FORTRAN implementation published in:
            Programming for Digital Signal Processing, IEEE Press 1979, Section 1, by G. D.
            Bergland and M. T. Dolan.  In 2003 it was cleaned up and turned into modern C
            by Steven Gustavson.  Davis King then rewrote it in modern C++ in 2014 and also
            changed the transform so that the outputs are identical to those given from FFTW.
        */

    // ------------------------------------------------------------------------------------

        /* Get binary log of integer argument - exact if n is a power of 2 */
        inline long fastlog2(long n)
        {
            long log = -1;
            while(n) {
                log++;
                n >>= 1;
            }
            return log ;
        }

    // ------------------------------------------------------------------------------------

        /* Radix-2 iteration subroutine */
        template <typename T>
        void R2TX(int nthpo, std::complex<T> *c0, std::complex<T> *c1)
        {
            for(int k=0; k<nthpo; k+=2) 
            {
                std::complex<T> temp = c0[k] + c1[k];
                c1[k] = c0[k] - c1[k];
                c0[k] = temp;
            }
        }

    // ------------------------------------------------------------------------------------

        /* Radix-4 iteration subroutine */
        template <typename T>
        void R4TX(int nthpo, std::complex<T> *c0, std::complex<T> *c1,
            std::complex<T> *c2, std::complex<T> *c3)
        {
            for(int k=0;k<nthpo;k+=4) 
            {
                std::complex<T> t1, t2, t3, t4;
                t1 = c0[k] + c2[k];
                t2 = c0[k] - c2[k];
                t3 = c1[k] + c3[k];
                t4 = c1[k] - c3[k];

                c0[k] = t1 + t3;
                c1[k] = t1 - t3;
                c2[k] = std::complex<T>(t2.real()-t4.imag(), t2.imag()+t4.real());
                c3[k] = std::complex<T>(t2.real()+t4.imag(), t2.imag()-t4.real());
            }
        }

    // ------------------------------------------------------------------------------------

        template <typename T>
        class twiddles
        {
            /*!
                The point of this object is to cache the twiddle values so we don't
                recompute them over and over inside R8TX().
            !*/
        public:

            twiddles()
            {
                data.resize(64);
            }
            
            const std::complex<T>* get_twiddles (
                int p 
            ) 
            /*!
                requires
                    - 0 <= p <= 64
                ensures
                    - returns a pointer to the twiddle factors needed by R8TX if nxtlt == 2^p
            !*/
            {
                // Compute the twiddle factors for this p value if we haven't done so
                // already.
                if (data[p].size() == 0)
                {
                    const int nxtlt = 0x1 << p;
                    data[p].reserve(nxtlt*7);
                    const T twopi = 6.2831853071795865; /* 2.0 * pi */
                    const T scale = twopi/(nxtlt*8.0);
                    std::complex<T> cs[7];
                    for (int j = 0; j < nxtlt; ++j)
                    {
                        const T arg = j*scale;
                        cs[0] = std::complex<T>(std::cos(arg),std::sin(arg));
                        cs[1] = cs[0]*cs[0];
                        cs[2] = cs[1]*cs[0];
                        cs[3] = cs[1]*cs[1];
                        cs[4] = cs[2]*cs[1];
                        cs[5] = cs[2]*cs[2];
                        cs[6] = cs[3]*cs[2];
                        data[p].insert(data[p].end(), cs, cs+7);
                    }
                }

                return &data[p][0];
            }

        private:
            std::vector<std::vector<std::complex<T> > > data;
        };

    // ----------------------------------------------------------------------------------------

        /* Radix-8 iteration subroutine */
        template <typename T>
        void R8TX(int nxtlt, int nthpo, int length, const std::complex<T>* cs,
            std::complex<T> *cc0, std::complex<T> *cc1, std::complex<T> *cc2, std::complex<T> *cc3,
            std::complex<T> *cc4, std::complex<T> *cc5, std::complex<T> *cc6, std::complex<T> *cc7)
        {
            const T irt2 = 0.707106781186548;  /* 1.0/sqrt(2.0) */

            for(int j=0; j<nxtlt; j++) 
            {
                for(int k=j;k<nthpo;k+=length) 
                {
                    std::complex<T> a0, a1, a2, a3, a4, a5, a6, a7;
                    std::complex<T> b0, b1, b2, b3, b4, b5, b6, b7;
                    a0 = cc0[k] + cc4[k];
                    a1 = cc1[k] + cc5[k];
                    a2 = cc2[k] + cc6[k];
                    a3 = cc3[k] + cc7[k];
                    a4 = cc0[k] - cc4[k];
                    a5 = cc1[k] - cc5[k];
                    a6 = cc2[k] - cc6[k];
                    a7 = cc3[k] - cc7[k];

                    b0 = a0 + a2;
                    b1 = a1 + a3;
                    b2 = a0 - a2;
                    b3 = a1 - a3;

                    b4 = std::complex<T>(a4.real()-a6.imag(), a4.imag()+a6.real());
                    b5 = std::complex<T>(a5.real()-a7.imag(), a5.imag()+a7.real());
                    b6 = std::complex<T>(a4.real()+a6.imag(), a4.imag()-a6.real());
                    b7 = std::complex<T>(a5.real()+a7.imag(), a5.imag()-a7.real());

                    const std::complex<T> tmp0(-b3.imag(), b3.real());
                    const std::complex<T> tmp1(irt2*(b5.real()-b5.imag()), irt2*(b5.real()+b5.imag()));
                    const std::complex<T> tmp2(-irt2*(b7.real()+b7.imag()), irt2*(b7.real()-b7.imag()));

                    cc0[k] = b0 + b1;
                    cc1[k] = b0 - b1;
                    cc2[k] = b2 + tmp0;
                    cc3[k] = b2 - tmp0;
                    cc4[k] = b4 + tmp1;
                    cc5[k] = b4 - tmp1;
                    cc6[k] = b6 + tmp2;
                    cc7[k] = b6 - tmp2;
                    if(j>0) 
                    {
                        cc1[k] *= cs[3];
                        cc2[k] *= cs[1];
                        cc3[k] *= cs[5];
                        cc4[k] *= cs[0];
                        cc5[k] *= cs[4];
                        cc6[k] *= cs[2];
                        cc7[k] *= cs[6];
                    }
                }

                cs += 7;
            }
        }

    // ------------------------------------------------------------------------------------

        template <typename T, long NR, long NC, typename MM, typename layout>
        void fft1d_inplace(matrix<std::complex<T>,NR,NC,MM,layout>& data, bool do_backward_fft, twiddles<T>& cs)
        /*!
            requires
                - is_vector(data) == true
                - is_power_of_two(data.size()) == true
            ensures
                - This routine replaces the input std::complex<double> vector by its finite
                  discrete complex fourier transform if do_backward_fft==true.  It replaces
                  the input std::complex<double> vector by its finite discrete complex
                  inverse fourier transform if do_backward_fft==false.

                  The implementation is a radix-2 FFT, but with faster shortcuts for
                  radix-4 and radix-8. It performs as many radix-8 iterations as possible,
                  and then finishes with a radix-2 or -4 iteration if needed.
        !*/
        {
            if (data.size() == 0)
                return;

            std::complex<T>* const b = &data(0);
            int L[16],L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15;
            int j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14;
            int j, ij, ji;
            int n2pow, n8pow, nthpo, ipass, nxtlt, length;

            n2pow = fastlog2(data.size());
            nthpo = data.size();

            n8pow = n2pow/3;

            if(n8pow)
            {
                /* Radix 8 iterations */
                for(ipass=1;ipass<=n8pow;ipass++) 
                {
                    const int p = n2pow - 3*ipass;
                    nxtlt = 0x1 << p;
                    length = 8*nxtlt;
                    R8TX(nxtlt, nthpo, length, cs.get_twiddles(p),
                        b, b+nxtlt, b+2*nxtlt, b+3*nxtlt,
                        b+4*nxtlt, b+5*nxtlt, b+6*nxtlt, b+7*nxtlt);
                }
            }

            if(n2pow%3 == 1) 
            {
                /* A final radix 2 iteration is needed */
                R2TX(nthpo, b, b+1); 
            }

            if(n2pow%3 == 2)  
            {
                /* A final radix 4 iteration is needed */
                R4TX(nthpo, b, b+1, b+2, b+3); 
            }

            for(j=1;j<=15;j++) 
            {
                L[j] = 1;
                if(j-n2pow <= 0) L[j] = 0x1 << (n2pow + 1 - j);
            }

            L15=L[1];L14=L[2];L13=L[3];L12=L[4];L11=L[5];L10=L[6];L9=L[7];
            L8=L[8];L7=L[9];L6=L[10];L5=L[11];L4=L[12];L3=L[13];L2=L[14];L1=L[15];

            ij = 0;

            for(j1=0;j1<L1;j1++)
                for(j2=j1;j2<L2;j2+=L1)
                    for(j3=j2;j3<L3;j3+=L2)
                        for(j4=j3;j4<L4;j4+=L3)
                            for(j5=j4;j5<L5;j5+=L4)
                                for(j6=j5;j6<L6;j6+=L5)
                                    for(j7=j6;j7<L7;j7+=L6)
                                        for(j8=j7;j8<L8;j8+=L7)
                                            for(j9=j8;j9<L9;j9+=L8)
                                                for(j10=j9;j10<L10;j10+=L9)
                                                    for(j11=j10;j11<L11;j11+=L10)
                                                        for(j12=j11;j12<L12;j12+=L11)
                                                            for(j13=j12;j13<L13;j13+=L12)
                                                                for(j14=j13;j14<L14;j14+=L13)
                                                                    for(ji=j14;ji<L15;ji+=L14) 
                                                                    {
                                                                        if(ij<ji)
                                                                            swap(b[ij], b[ji]);
                                                                        ij++;
                                                                    }


            // unscramble outputs
            if(!do_backward_fft) 
            {
                for(long i=1, j=data.size()-1; i<data.size()/2; i++,j--)
                {
                    swap(b[j], b[i]);
                }
            }
        }

    // ------------------------------------------------------------------------------------

        template < typename T, long NR, long NC, typename MM, typename L >
        void fft2d_inplace(
            matrix<std::complex<T>,NR,NC,MM,L>& data,
            bool do_backward_fft
        )
        {
            if (data.size() == 0)
                return;

            matrix<std::complex<double> > buff;
            twiddles<double> cs;

            // Compute transform row by row
            for(long r=0; r<data.nr(); ++r) 
            {
                buff = matrix_cast<std::complex<double> >(rowm(data,r));
                fft1d_inplace(buff, do_backward_fft, cs);
                set_rowm(data,r) = matrix_cast<std::complex<T> >(buff);
            }

            // Compute transform column by column
            for(long c=0; c<data.nc(); ++c) 
            {
                buff = matrix_cast<std::complex<double> >(colm(data,c));
                fft1d_inplace(buff, do_backward_fft, cs);
                set_colm(data,c) = matrix_cast<std::complex<T> >(buff);
            }
        }
        
    // ----------------------------------------------------------------------------------------

        template <
            typename EXP, 
            typename T
            >
        void fft2d(
            const matrix_exp<EXP>& data, 
            matrix<std::complex<T> >& data_out,
            bool do_backward_fft
        )
        {
            // make sure requires clause is not broken
            DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
                "\t matrix fft(data)"
                << "\n\t The number of rows and columns must be powers of two."
                << "\n\t data.nr(): "<< data.nr()
                << "\n\t data.nc(): "<< data.nc()
                << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
                << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

            if (data.size() == 0)
                return;

            matrix<std::complex<double> > buff;
            data_out.set_size(data.nr(), data.nc());
            twiddles<double> cs;

            // Compute transform row by row
            for(long r=0; r<data.nr(); ++r) 
            {
                buff = matrix_cast<std::complex<double> >(rowm(data,r));
                fft1d_inplace(buff, do_backward_fft, cs);
                set_rowm(data_out,r) = matrix_cast<std::complex<T> >(buff);
            }

            // Compute transform column by column
            for(long c=0; c<data_out.nc(); ++c) 
            {
                buff = matrix_cast<std::complex<double> >(colm(data_out,c));
                fft1d_inplace(buff, do_backward_fft, cs);
                set_colm(data_out,c) = matrix_cast<std::complex<T> >(buff);
            }
        }
        
    // ------------------------------------------------------------------------------------

    } // end namespace impl

// ----------------------------------------------------------------------------------------

    template <typename EXP>
    matrix<typename EXP::type> fft (const matrix_exp<EXP>& data)
    {
        // You have to give a complex matrix
        COMPILE_TIME_ASSERT(is_complex<typename EXP::type>::value);
        // make sure requires clause is not broken
        DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
            "\t matrix fft(data)"
            << "\n\t The number of rows and columns must be powers of two."
            << "\n\t data.nr(): "<< data.nr()
            << "\n\t data.nc(): "<< data.nc()
            << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
            << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

        if (data.nr() == 1 || data.nc() == 1)
        {
            matrix<typename EXP::type> temp(data);
            impl::twiddles<typename EXP::type::value_type> cs;
            impl::fft1d_inplace(temp, false, cs);
            return temp;
        }
        else
        {
            matrix<typename EXP::type> temp;
            impl::fft2d(data, temp, false);
            return temp;
        }
    }

    template <typename EXP>
    matrix<typename EXP::type> ifft (const matrix_exp<EXP>& data)
    {
        // You have to give a complex matrix
        COMPILE_TIME_ASSERT(is_complex<typename EXP::type>::value);
        // make sure requires clause is not broken
        DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
            "\t matrix ifft(data)"
            << "\n\t The number of rows and columns must be powers of two."
            << "\n\t data.nr(): "<< data.nr()
            << "\n\t data.nc(): "<< data.nc()
            << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
            << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

        matrix<typename EXP::type> temp;
        if (data.size() == 0)
            return temp;

        if (data.nr() == 1 || data.nc() == 1)
        {
            temp = data;
            impl::twiddles<typename EXP::type::value_type> cs;
            impl::fft1d_inplace(temp, true, cs);
        }
        else
        {
            impl::fft2d(data, temp, true);
        }
        temp /= data.size();
        return temp;
    }

// ----------------------------------------------------------------------------------------

    template < typename T, long NR, long NC, typename MM, typename L >
    void fft_inplace (matrix<std::complex<T>,NR,NC,MM,L>& data)
    // Note that we don't divide the outputs by data.size() so this isn't quite the inverse.
    {
        // make sure requires clause is not broken
        DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
            "\t void fft_inplace(data)"
            << "\n\t The number of rows and columns must be powers of two."
            << "\n\t data.nr(): "<< data.nr()
            << "\n\t data.nc(): "<< data.nc()
            << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
            << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

        if (data.nr() == 1 || data.nc() == 1)
        {
            impl::twiddles<T> cs;
            impl::fft1d_inplace(data, false, cs);
        }
        else
        {
            impl::fft2d_inplace(data, false);
        }
    }

    template < typename T, long NR, long NC, typename MM, typename L >
    void ifft_inplace (matrix<std::complex<T>,NR,NC,MM,L>& data)
    {
        // make sure requires clause is not broken
        DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
            "\t void ifft_inplace(data)"
            << "\n\t The number of rows and columns must be powers of two."
            << "\n\t data.nr(): "<< data.nr()
            << "\n\t data.nc(): "<< data.nc()
            << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
            << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

        if (data.nr() == 1 || data.nc() == 1)
        {
            impl::twiddles<T> cs;
            impl::fft1d_inplace(data, true, cs);
        }
        else
        {
            impl::fft2d_inplace(data, true);
        }
    }

// ----------------------------------------------------------------------------------------

    /*
        I'm disabling any use of the FFTW bindings because FFTW is, as of this writing, not
        threadsafe as a library.  This means that if multiple threads were to make
        concurrent calls to these fft routines then the program could crash.  If at some
        point FFTW is fixed I'll turn these bindings back on.

        See https://github.com/FFTW/fftw3/issues/16
    */
#if 0
#ifdef DLIB_USE_FFTW

    template <long NR, long NC, typename MM, typename L>
    matrix<std::complex<double>,NR,NC,MM,L> call_fftw_fft(
        const matrix<std::complex<double>,NR,NC,MM,L>& data
    )
    {
        // make sure requires clause is not broken
        DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
            "\t matrix fft(data)"
            << "\n\t The number of rows and columns must be powers of two."
            << "\n\t data.nr(): "<< data.nr()
            << "\n\t data.nc(): "<< data.nc()
            << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
            << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

        if (data.size() == 0)
            return data;

        matrix<std::complex<double>,NR,NC,MM,L> m2(data.nr(),data.nc());
        fftw_complex *in, *out;
        fftw_plan p;
        in = (fftw_complex*)&data(0,0);
        out = (fftw_complex*)&m2(0,0);
        if (data.nr() == 1 || data.nc() == 1)
            p = fftw_plan_dft_1d(data.size(), in, out, FFTW_FORWARD, FFTW_ESTIMATE);
        else
            p = fftw_plan_dft_2d(data.nr(), data.nc(), in, out, FFTW_FORWARD, FFTW_ESTIMATE);
        fftw_execute(p); 
        fftw_destroy_plan(p);
        return m2;
    }

    template <long NR, long NC, typename MM, typename L>
    matrix<std::complex<double>,NR,NC,MM,L> call_fftw_ifft(
        const matrix<std::complex<double>,NR,NC,MM,L>& data
    )
    {
        // make sure requires clause is not broken
        DLIB_CASSERT(is_power_of_two(data.nr()) && is_power_of_two(data.nc()),
            "\t matrix ifft(data)"
            << "\n\t The number of rows and columns must be powers of two."
            << "\n\t data.nr(): "<< data.nr()
            << "\n\t data.nc(): "<< data.nc()
            << "\n\t is_power_of_two(data.nr()): " << is_power_of_two(data.nr())
            << "\n\t is_power_of_two(data.nc()): " << is_power_of_two(data.nc())
            );

        if (data.size() == 0)
            return data;

        matrix<std::complex<double>,NR,NC,MM,L> m2(data.nr(),data.nc());
        fftw_complex *in, *out;
        fftw_plan p;
        in = (fftw_complex*)&data(0,0);
        out = (fftw_complex*)&m2(0,0);
        if (data.nr() == 1 || data.nc() == 1)
            p = fftw_plan_dft_1d(data.size(), in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
        else
            p = fftw_plan_dft_2d(data.nr(), data.nc(), in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
        fftw_execute(p); 
        fftw_destroy_plan(p);
        return m2;
    }

// ----------------------------------------------------------------------------------------

// call FFTW for these cases:
    inline matrix<std::complex<double>,0,1> fft (const matrix<std::complex<double>,0,1>& data) {return call_fftw_fft(data);}
    inline matrix<std::complex<double>,0,1> ifft(const matrix<std::complex<double>,0,1>& data) {return call_fftw_ifft(data)/data.size();}
    inline matrix<std::complex<double>,1,0> fft (const matrix<std::complex<double>,1,0>& data) {return call_fftw_fft(data);}
    inline matrix<std::complex<double>,1,0> ifft(const matrix<std::complex<double>,1,0>& data) {return call_fftw_ifft(data)/data.size();}
    inline matrix<std::complex<double> > fft (const matrix<std::complex<double> >& data) {return call_fftw_fft(data);}
    inline matrix<std::complex<double> > ifft(const matrix<std::complex<double> >& data) {return call_fftw_ifft(data)/data.size();}

    inline void fft_inplace (matrix<std::complex<double>,0,1>& data) {data = call_fftw_fft(data);}
    inline void ifft_inplace(matrix<std::complex<double>,0,1>& data) {data = call_fftw_ifft(data);}
    inline void fft_inplace (matrix<std::complex<double>,1,0>& data) {data = call_fftw_fft(data);}
    inline void ifft_inplace(matrix<std::complex<double>,1,0>& data) {data = call_fftw_ifft(data);}
    inline void fft_inplace (matrix<std::complex<double> >& data) {data = call_fftw_fft(data);}
    inline void ifft_inplace(matrix<std::complex<double> >& data) {data = call_fftw_ifft(data);}

#endif // DLIB_USE_FFTW
#endif // end of #if 0

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_FFt_Hh_