/usr/include/dlib/matrix/lapack/syevr.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_EVR_Hh_
#define DLIB_LAPACk_EVR_Hh_
#include "fortran_id.h"
#include "../matrix.h"
namespace dlib
{
namespace lapack
{
namespace binding
{
extern "C"
{
void DLIB_FORTRAN_ID(dsyevr) (char *jobz, char *range, char *uplo, integer *n,
double *a, integer *lda, double *vl, double *vu, integer * il,
integer *iu, double *abstol, integer *m, double *w,
double *z_, integer *ldz, integer *isuppz, double *work,
integer *lwork, integer *iwork, integer *liwork, integer *info);
void DLIB_FORTRAN_ID(ssyevr) (char *jobz, char *range, char *uplo, integer *n,
float *a, integer *lda, float *vl, float *vu, integer * il,
integer *iu, float *abstol, integer *m, float *w,
float *z_, integer *ldz, integer *isuppz, float *work,
integer *lwork, integer *iwork, integer *liwork, integer *info);
}
inline int syevr (char jobz, char range, char uplo, integer n,
double* a, integer lda, double vl, double vu, integer il,
integer iu, double abstol, integer *m, double *w,
double *z, integer ldz, integer *isuppz, double *work,
integer lwork, integer *iwork, integer liwork)
{
integer info = 0;
DLIB_FORTRAN_ID(dsyevr)(&jobz, &range, &uplo, &n,
a, &lda, &vl, &vu, &il,
&iu, &abstol, m, w,
z, &ldz, isuppz, work,
&lwork, iwork, &liwork, &info);
return info;
}
inline int syevr (char jobz, char range, char uplo, integer n,
float* a, integer lda, float vl, float vu, integer il,
integer iu, float abstol, integer *m, float *w,
float *z, integer ldz, integer *isuppz, float *work,
integer lwork, integer *iwork, integer liwork)
{
integer info = 0;
DLIB_FORTRAN_ID(ssyevr)(&jobz, &range, &uplo, &n,
a, &lda, &vl, &vu, &il,
&iu, &abstol, m, w,
z, &ldz, isuppz, work,
&lwork, iwork, &liwork, &info);
return info;
}
}
// ------------------------------------------------------------------------------------
/*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DSYEVR computes selected eigenvalues and, optionally, eigenvectors
* of a real symmetric matrix A. Eigenvalues and eigenvectors can be
* selected by specifying either a range of values or a range of
* indices for the desired eigenvalues.
*
* DSYEVR first reduces the matrix A to tridiagonal form T with a call
* to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute
* the eigenspectrum using Relatively Robust Representations. DSTEMR
* computes eigenvalues by the dqds algorithm, while orthogonal
* eigenvectors are computed from various "good" L D L^T representations
* (also known as Relatively Robust Representations). Gram-Schmidt
* orthogonalization is avoided as far as possible. More specifically,
* the various steps of the algorithm are as follows.
*
* For each unreduced block (submatrix) of T,
* (a) Compute T - sigma I = L D L^T, so that L and D
* define all the wanted eigenvalues to high relative accuracy.
* This means that small relative changes in the entries of D and L
* cause only small relative changes in the eigenvalues and
* eigenvectors. The standard (unfactored) representation of the
* tridiagonal matrix T does not have this property in general.
* (b) Compute the eigenvalues to suitable accuracy.
* If the eigenvectors are desired, the algorithm attains full
* accuracy of the computed eigenvalues only right before
* the corresponding vectors have to be computed, see steps c) and d).
* (c) For each cluster of close eigenvalues, select a new
* shift close to the cluster, find a new factorization, and refine
* the shifted eigenvalues to suitable accuracy.
* (d) For each eigenvalue with a large enough relative separation compute
* the corresponding eigenvector by forming a rank revealing twisted
* factorization. Go back to (c) for any clusters that remain.
*
* The desired accuracy of the output can be specified by the input
* parameter ABSTOL.
*
* For more details, see DSTEMR's documentation and:
* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
* to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
* 2004. Also LAPACK Working Note 154.
* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
* tridiagonal eigenvalue/eigenvector problem",
* Computer Science Division Technical Report No. UCB/CSD-97-971,
* UC Berkeley, May 1997.
*
*
* Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
* on machines which conform to the ieee-754 floating point standard.
* DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
* when partial spectrum requests are made.
*
* Normal execution of DSTEMR may create NaNs and infinities and
* hence may abort due to a floating point exception in environments
* which do not handle NaNs and infinities in the ieee standard default
* manner.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
********** DSTEIN are called
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
* On entry, the symmetric matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* VL (input) DOUBLE PRECISION
* VU (input) DOUBLE PRECISION
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) DOUBLE PRECISION
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*|T| will be used in its place,
* where |T| is the 1-norm of the tridiagonal matrix obtained
* by reducing A to tridiagonal form.
*
* See "Computing Small Singular Values of Bidiagonal Matrices
* with Guaranteed High Relative Accuracy," by Demmel and
* Kahan, LAPACK Working Note #3.
*
* If high relative accuracy is important, set ABSTOL to
* DLAMCH( 'Safe minimum' ). Doing so will guarantee that
* eigenvalues are computed to high relative accuracy when
* possible in future releases. The current code does not
* make any guarantees about high relative accuracy, but
* future releases will. See J. Barlow and J. Demmel,
* "Computing Accurate Eigensystems of Scaled Diagonally
* Dominant Matrices", LAPACK Working Note #7, for a discussion
* of which matrices define their eigenvalues to high relative
* accuracy.
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* The first M elements contain the selected eigenvalues in
* ascending order.
*
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix A
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
* Supplying N columns is always safe.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ).
********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,26*N).
* For optimal efficiency, LWORK >= (NB+6)*N,
* where NB is the max of the blocksize for DSYTRD and DORMTR
* returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
* On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK. LIWORK >= max(1,10*N).
*
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal size of the IWORK array,
* returns this value as the first entry of the IWORK array, and
* no error message related to LIWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: Internal error
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
* Ken Stanley, Computer Science Division, University of
* California at Berkeley, USA
* Jason Riedy, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*/
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2, long NR3, long NR4,
long NC1, long NC2, long NC3, long NC4,
typename MM
>
int syevr (
const char jobz,
const char range,
const char uplo,
matrix<T,NR1,NC1,MM,column_major_layout>& a,
const double vl,
const double vu,
const integer il,
const integer iu,
const double abstol,
integer& num_eigenvalues_found,
matrix<T,NR2,NC2,MM,column_major_layout>& w,
matrix<T,NR3,NC3,MM,column_major_layout>& z,
matrix<integer,NR4,NC4,MM,column_major_layout>& isuppz
)
{
matrix<T,0,1,MM,column_major_layout> work;
matrix<integer,0,1,MM,column_major_layout> iwork;
const long n = a.nr();
w.set_size(n,1);
isuppz.set_size(2*n, 1);
if (jobz == 'V')
{
z.set_size(n,n);
}
else
{
z.set_size(NR3?NR3:1, NC3?NC3:1);
}
// figure out how big the workspace needs to be.
T work_size = 1;
integer iwork_size = 1;
int info = binding::syevr(jobz, range, uplo, n, &a(0,0),
a.nr(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
&w(0,0), &z(0,0), z.nr(), &isuppz(0,0), &work_size, -1,
&iwork_size, -1);
if (info != 0)
return info;
if (work.size() < work_size)
work.set_size(static_cast<long>(work_size), 1);
if (iwork.size() < iwork_size)
iwork.set_size(iwork_size, 1);
// compute the actual decomposition
info = binding::syevr(jobz, range, uplo, n, &a(0,0),
a.nr(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
&w(0,0), &z(0,0), z.nr(), &isuppz(0,0), &work(0,0), work.size(),
&iwork(0,0), iwork.size());
return info;
}
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2, long NR3, long NR4,
long NC1, long NC2, long NC3, long NC4,
typename MM
>
int syevr (
const char jobz,
const char range,
char uplo,
matrix<T,NR1,NC1,MM,row_major_layout>& a,
const double vl,
const double vu,
const integer il,
const integer iu,
const double abstol,
integer& num_eigenvalues_found,
matrix<T,NR2,NC2,MM,row_major_layout>& w,
matrix<T,NR3,NC3,MM,row_major_layout>& z,
matrix<integer,NR4,NC4,MM,row_major_layout>& isuppz
)
{
matrix<T,0,1,MM,row_major_layout> work;
matrix<integer,0,1,MM,row_major_layout> iwork;
if (uplo == 'L')
uplo = 'U';
else
uplo = 'L';
const long n = a.nr();
w.set_size(n,1);
isuppz.set_size(2*n, 1);
if (jobz == 'V')
{
z.set_size(n,n);
}
else
{
z.set_size(NR3?NR3:1, NC3?NC3:1);
}
// figure out how big the workspace needs to be.
T work_size = 1;
integer iwork_size = 1;
int info = binding::syevr(jobz, range, uplo, n, &a(0,0),
a.nc(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
&w(0,0), &z(0,0), z.nc(), &isuppz(0,0), &work_size, -1,
&iwork_size, -1);
if (info != 0)
return info;
if (work.size() < work_size)
work.set_size(static_cast<long>(work_size), 1);
if (iwork.size() < iwork_size)
iwork.set_size(iwork_size, 1);
// compute the actual decomposition
info = binding::syevr(jobz, range, uplo, n, &a(0,0),
a.nc(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
&w(0,0), &z(0,0), z.nc(), &isuppz(0,0), &work(0,0), work.size(),
&iwork(0,0), iwork.size());
z = trans(z);
return info;
}
// ------------------------------------------------------------------------------------
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_LAPACk_EVR_Hh_
|