This file is indexed.

/usr/include/dlib/matrix/lapack/gesdd.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_SDD_Hh_
#define DLIB_LAPACk_SDD_Hh_

#include "fortran_id.h"
#include "../matrix.h"

namespace dlib
{
    namespace lapack
    {
        namespace binding
        {
            extern "C"
            {
                void DLIB_FORTRAN_ID(dgesdd) (char const* jobz, 
                                              const integer* m, const integer* n, double* a, const integer* lda,
                                              double* s, double* u, const integer* ldu,
                                              double* vt, const integer* ldvt,
                                              double* work, const integer* lwork, integer* iwork, integer* info);

                void DLIB_FORTRAN_ID(sgesdd) (char const* jobz, 
                                              const integer* m, const integer* n, float* a, const integer* lda,
                                              float* s, float* u, const integer* ldu,
                                              float* vt, const integer* ldvt,
                                              float* work, const integer* lwork, integer* iwork, integer* info);

            }

            inline integer gesdd (const char jobz, 
                              const integer m, const integer n, double* a, const integer lda,
                              double* s, double* u, const integer ldu,
                              double* vt, const integer ldvt,
                              double* work, const integer lwork, integer* iwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(dgesdd)(&jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, iwork, &info);
                return info;
            }

            inline integer gesdd (const char jobz, 
                              const integer m, const integer n, float* a, const integer lda,
                              float* s, float* u, const integer ldu,
                              float* vt, const integer ldvt,
                              float* work, const integer lwork, integer* iwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(sgesdd)(&jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, iwork, &info);
                return info;
            }
        }

    // ------------------------------------------------------------------------------------

/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGESDD computes the singular value decomposition (SVD) of a real */
/*  M-by-N matrix A, optionally computing the left and right singular */
/*  vectors.  If singular vectors are desired, it uses a */
/*  divide-and-conquer algorithm. */

/*  The SVD is written */

/*       A = U * SIGMA * transpose(V) */

/*  where SIGMA is an M-by-N matrix which is zero except for its */
/*  min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
/*  V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA */
/*  are the singular values of A; they are real and non-negative, and */
/*  are returned in descending order.  The first min(m,n) columns of */
/*  U and V are the left and right singular vectors of A. */

/*  Note that the routine returns VT = V**T, not V. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          Specifies options for computing all or part of the matrix U: */
/*          = 'A':  all M columns of U and all N rows of V**T are */
/*                  returned in the arrays U and VT; */
/*          = 'S':  the first min(M,N) columns of U and the first */
/*                  min(M,N) rows of V**T are returned in the arrays U */
/*                  and VT; */
/*          = 'O':  If M >= N, the first N columns of U are overwritten */
/*                  on the array A and all rows of V**T are returned in */
/*                  the array VT; */
/*                  otherwise, all columns of U are returned in the */
/*                  array U and the first M rows of V**T are overwritten */
/*                  in the array A; */
/*          = 'N':  no columns of U or rows of V**T are computed. */

/*  M       (input) INTEGER */
/*          The number of rows of the input matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the input matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, */
/*          if JOBZ = 'O',  A is overwritten with the first N columns */
/*                          of U (the left singular vectors, stored */
/*                          columnwise) if M >= N; */
/*                          A is overwritten with the first M rows */
/*                          of V**T (the right singular vectors, stored */
/*                          rowwise) otherwise. */
/*          if JOBZ .ne. 'O', the contents of A are destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  S       (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The singular values of A, sorted so that S(i) >= S(i+1). */

/*  U       (output) DOUBLE PRECISION array, dimension (LDU,UCOL) */
/*          UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
/*          UCOL = min(M,N) if JOBZ = 'S'. */
/*          If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
/*          orthogonal matrix U; */
/*          if JOBZ = 'S', U contains the first min(M,N) columns of U */
/*          (the left singular vectors, stored columnwise); */
/*          if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */

/*  LDU     (input) INTEGER */
/*          The leading dimension of the array U.  LDU >= 1; if */
/*          JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */

/*  VT      (output) DOUBLE PRECISION array, dimension (LDVT,N) */
/*          If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
/*          N-by-N orthogonal matrix V**T; */
/*          if JOBZ = 'S', VT contains the first min(M,N) rows of */
/*          V**T (the right singular vectors, stored rowwise); */
/*          if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */

/*  LDVT    (input) INTEGER */
/*          The leading dimension of the array VT.  LDVT >= 1; if */
/*          JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
/*          if JOBZ = 'S', LDVT >= min(M,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= 1. */
/*          If JOBZ = 'N', */
/*            LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)). */
/*          If JOBZ = 'O', */
/*            LWORK >= 3*min(M,N)*min(M,N) + */
/*                     max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). */
/*          If JOBZ = 'S' or 'A' */
/*            LWORK >= 3*min(M,N)*min(M,N) + */
/*                     max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). */
/*          For good performance, LWORK should generally be larger. */
/*          If LWORK = -1 but other input arguments are legal, WORK(1) */
/*          returns the optimal LWORK. */

/*  IWORK   (workspace) INTEGER array, dimension (8*min(M,N)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  DBDSDC did not converge, updating process failed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2, long NR3, long NR4,
            long NC1, long NC2, long NC3, long NC4,
            typename MM
            >
        int gesdd (
            const char jobz,
            matrix<T,NR1,NC1,MM,column_major_layout>& a,
            matrix<T,NR2,NC2,MM,column_major_layout>& s,
            matrix<T,NR3,NC3,MM,column_major_layout>& u,
            matrix<T,NR4,NC4,MM,column_major_layout>& vt
        )
        {
            matrix<T,0,1,MM,column_major_layout> work;
            matrix<integer,0,1,MM,column_major_layout> iwork;

            const long m = a.nr();
            const long n = a.nc();
            s.set_size(std::min(m,n), 1);

            // make sure the iwork memory block is big enough
            if (iwork.size() < 8*std::min(m,n))
                iwork.set_size(8*std::min(m,n), 1);

            if (jobz == 'A')
            {
                u.set_size(m,m);
                vt.set_size(n,n);
            }
            else if (jobz == 'S')
            {
                u.set_size(m, std::min(m,n));
                vt.set_size(std::min(m,n), n);
            }
            else if (jobz == 'O')
            {
                DLIB_CASSERT(false, "jobz == 'O' not supported");
            }
            else
            {
                u.set_size(NR3?NR3:1, NC3?NC3:1);
                vt.set_size(NR4?NR4:1, NC4?NC4:1);
            }

            // figure out how big the workspace needs to be.
            T work_size = 1;
            int info = binding::gesdd(jobz, a.nr(), a.nc(), &a(0,0), a.nr(),
                                      &s(0,0), &u(0,0), u.nr(), &vt(0,0), vt.nr(),
                                      &work_size, -1, &iwork(0,0));

            if (info != 0)
                return info;

            // There is a bug in an older version of LAPACK in Debian etch 
            // that causes the gesdd to return the wrong value for work_size
            // when jobz == 'N'.  So verify the value of work_size.
            if (jobz == 'N')
            {
                using std::min; 
                using std::max; 
                const T min_work_size = 3*min(m,n) + max(max(m,n),7*min(m,n));
                if (work_size < min_work_size)
                    work_size = min_work_size;
            }

            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);

            // compute the actual SVD
            info = binding::gesdd(jobz, a.nr(), a.nc(), &a(0,0), a.nr(),
                                  &s(0,0), &u(0,0), u.nr(), &vt(0,0), vt.nr(),
                                  &work(0,0), work.size(), &iwork(0,0));

            return info;
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2, long NR3, long NR4,
            long NC1, long NC2, long NC3, long NC4,
            typename MM
            >
        int gesdd (
            const char jobz,
            matrix<T,NR1,NC1,MM,row_major_layout>& a,
            matrix<T,NR2,NC2,MM,row_major_layout>& s,
            matrix<T,NR3,NC3,MM,row_major_layout>& u_,
            matrix<T,NR4,NC4,MM,row_major_layout>& vt_
        )
        {
            matrix<T,0,1,MM,row_major_layout> work;
            matrix<integer,0,1,MM,row_major_layout> iwork;

            // Row major order matrices are transposed from LAPACK's point of view.
            matrix<T,NR4,NC4,MM,row_major_layout>& u = vt_;
            matrix<T,NR3,NC3,MM,row_major_layout>& vt = u_;


            const long m = a.nc();
            const long n = a.nr();
            s.set_size(std::min(m,n), 1);

            // make sure the iwork memory block is big enough
            if (iwork.size() < 8*std::min(m,n))
                iwork.set_size(8*std::min(m,n), 1);

            if (jobz == 'A')
            {
                u.set_size(m,m);
                vt.set_size(n,n);
            }
            else if (jobz == 'S')
            {
                u.set_size(std::min(m,n), m);
                vt.set_size(n, std::min(m,n));
            }
            else if (jobz == 'O')
            {
                DLIB_CASSERT(false, "jobz == 'O' not supported");
            }
            else
            {
                u.set_size(NR4?NR4:1, NC4?NC4:1);
                vt.set_size(NR3?NR3:1, NC3?NC3:1);
            }

            // figure out how big the workspace needs to be.
            T work_size = 1;
            int info = binding::gesdd(jobz, m, n, &a(0,0), a.nc(),
                                      &s(0,0), &u(0,0), u.nc(), &vt(0,0), vt.nc(),
                                      &work_size, -1, &iwork(0,0));

            if (info != 0)
                return info;

            // There is a bug in an older version of LAPACK in Debian etch 
            // that causes the gesdd to return the wrong value for work_size
            // when jobz == 'N'.  So verify the value of work_size.
            if (jobz == 'N')
            {
                using std::min; 
                using std::max; 
                const T min_work_size = 3*min(m,n) + max(max(m,n),7*min(m,n));
                if (work_size < min_work_size)
                    work_size = min_work_size;
            }


            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);

            // compute the actual SVD
            info = binding::gesdd(jobz, m, n, &a(0,0), a.nc(),
                                  &s(0,0), &u(0,0), u.nc(), &vt(0,0), vt.nc(),
                                  &work(0,0), work.size(), &iwork(0,0));

            return info;
        }

    // ------------------------------------------------------------------------------------

    }

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_LAPACk_SDD_Hh_