/usr/include/dlib/matrix/lapack/geqrf.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_GEQRF_Hh_
#define DLIB_LAPACk_GEQRF_Hh_
#include "fortran_id.h"
#include "../matrix.h"
namespace dlib
{
namespace lapack
{
namespace binding
{
extern "C"
{
void DLIB_FORTRAN_ID(dgeqrf) (integer *m, integer *n, double *a, integer *
lda, double *tau, double *work, integer *lwork,
integer *info);
void DLIB_FORTRAN_ID(sgeqrf) (integer *m, integer *n, float *a, integer *
lda, float *tau, float *work, integer *lwork,
integer *info);
}
inline int geqrf (integer m, integer n, double *a, integer lda,
double *tau, double *work, integer lwork)
{
integer info = 0;
DLIB_FORTRAN_ID(dgeqrf)(&m, &n, a, &lda,
tau, work, &lwork, &info);
return info;
}
inline int geqrf (integer m, integer n, float *a, integer lda,
float *tau, float *work, integer lwork)
{
integer info = 0;
DLIB_FORTRAN_ID(sgeqrf)(&m, &n, a, &lda,
tau, work, &lwork, &info);
return info;
}
}
// ------------------------------------------------------------------------------------
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEQRF computes a QR factorization of a real M-by-N matrix A: */
/* A = Q * R. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, the elements on and above the diagonal of the array */
/* contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
/* upper triangular if m >= n); the elements below the diagonal, */
/* with the array TAU, represent the orthogonal matrix Q as a */
/* product of min(m,n) elementary reflectors (see Further */
/* Details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,N). */
/* For optimum performance LWORK >= N*NB, where NB is */
/* the optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a real scalar, and v is a real vector with */
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/* and tau in TAU(i). */
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2,
long NC1, long NC2,
typename MM
>
int geqrf (
matrix<T,NR1,NC1,MM,column_major_layout>& a,
matrix<T,NR2,NC2,MM,column_major_layout>& tau
)
{
matrix<T,0,1,MM,column_major_layout> work;
tau.set_size(std::min(a.nr(), a.nc()), 1);
// figure out how big the workspace needs to be.
T work_size = 1;
int info = binding::geqrf(a.nr(), a.nc(), &a(0,0), a.nr(),
&tau(0,0), &work_size, -1);
if (info != 0)
return info;
if (work.size() < work_size)
work.set_size(static_cast<long>(work_size), 1);
// compute the actual decomposition
info = binding::geqrf(a.nr(), a.nc(), &a(0,0), a.nr(),
&tau(0,0), &work(0,0), work.size());
return info;
}
// ------------------------------------------------------------------------------------
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_LAPACk_GEQRF_Hh_
|