This file is indexed.

/usr/include/dlib/matrix/lapack/geev.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_GEEV_Hh_
#define DLIB_LAPACk_GEEV_Hh_

#include "fortran_id.h"
#include "../matrix.h"

namespace dlib
{
    namespace lapack
    {
        namespace binding
        {
            extern "C"
            {
                void DLIB_FORTRAN_ID(dgeev) (char *jobvl, char *jobvr, integer *n, double * a, 
                                             integer *lda, double *wr, double *wi, double *vl, 
                                             integer *ldvl, double *vr, integer *ldvr, double *work, 
                                             integer *lwork, integer *info);

                void DLIB_FORTRAN_ID(sgeev) (char *jobvl, char *jobvr, integer *n, float * a, 
                                             integer *lda, float *wr, float *wi, float *vl, 
                                             integer *ldvl, float *vr, integer *ldvr, float *work, 
                                             integer *lwork, integer *info);

            }

            inline int geev (char jobvl, char jobvr, integer n, double *a, 
                             integer lda, double *wr, double *wi, double *vl, 
                             integer ldvl, double *vr, integer ldvr, double *work, 
                             integer lwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(dgeev)(&jobvl, &jobvr, &n, a,
                                       &lda, wr, wi, vl, 
                                       &ldvl, vr, &ldvr, work,
                                       &lwork, &info);
                return info;
            }

            inline int geev (char jobvl, char jobvr, integer n, float *a, 
                             integer lda, float *wr, float *wi, float *vl, 
                             integer ldvl, float *vr, integer ldvr, float *work, 
                             integer lwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(sgeev)(&jobvl, &jobvr, &n, a,
                                       &lda, wr, wi, vl, 
                                       &ldvl, vr, &ldvr, work,
                                       &lwork, &info);
                return info;
            }


        }

    // ------------------------------------------------------------------------------------

/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEEV computes for an N-by-N real nonsymmetric matrix A, the */
/*  eigenvalues and, optionally, the left and/or right eigenvectors. */

/*  The right eigenvector v(j) of A satisfies */
/*                   A * v(j) = lambda(j) * v(j) */
/*  where lambda(j) is its eigenvalue. */
/*  The left eigenvector u(j) of A satisfies */
/*                u(j)**H * A = lambda(j) * u(j)**H */
/*  where u(j)**H denotes the conjugate transpose of u(j). */

/*  The computed eigenvectors are normalized to have Euclidean norm */
/*  equal to 1 and largest component real. */

/*  Arguments */
/*  ========= */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N': left eigenvectors of A are not computed; */
/*          = 'V': left eigenvectors of A are computed. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N': right eigenvectors of A are not computed; */
/*          = 'V': right eigenvectors of A are computed. */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  WR      (output) DOUBLE PRECISION array, dimension (N) */
/*  WI      (output) DOUBLE PRECISION array, dimension (N) */
/*          WR and WI contain the real and imaginary parts, */
/*          respectively, of the computed eigenvalues.  Complex */
/*          conjugate pairs of eigenvalues appear consecutively */
/*          with the eigenvalue having the positive imaginary part */
/*          first. */

/*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/*          after another in the columns of VL, in the same order */
/*          as their eigenvalues. */
/*          If JOBVL = 'N', VL is not referenced. */
/*          If the j-th eigenvalue is real, then u(j) = VL(:,j), */
/*          the j-th column of VL. */
/*          If the j-th and (j+1)-st eigenvalues form a complex */
/*          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
/*          u(j+1) = VL(:,j) - i*VL(:,j+1). */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL.  LDVL >= 1; if */
/*          JOBVL = 'V', LDVL >= N. */

/*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/*          after another in the columns of VR, in the same order */
/*          as their eigenvalues. */
/*          If JOBVR = 'N', VR is not referenced. */
/*          If the j-th eigenvalue is real, then v(j) = VR(:,j), */
/*          the j-th column of VR. */
/*          If the j-th and (j+1)-st eigenvalues form a complex */
/*          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
/*          v(j+1) = VR(:,j) - i*VR(:,j+1). */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR.  LDVR >= 1; if */
/*          JOBVR = 'V', LDVR >= N. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,3*N), and */
/*          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good */
/*          performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the QR algorithm failed to compute all the */
/*                eigenvalues, and no eigenvectors have been computed; */
/*                elements i+1:N of WR and WI contain eigenvalues which */
/*                have converged. */

    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2, long NR3, long NR4, long NR5,
            long NC1, long NC2, long NC3, long NC4, long NC5,
            typename MM,
            typename layout
            >
        int geev (
            const char jobvl,
            const char jobvr,
            matrix<T,NR1,NC1,MM,column_major_layout>& a,
            matrix<T,NR2,NC2,MM,layout>& wr,
            matrix<T,NR3,NC3,MM,layout>& wi,
            matrix<T,NR4,NC4,MM,column_major_layout>& vl,
            matrix<T,NR5,NC5,MM,column_major_layout>& vr
        )
        {
            matrix<T,0,1,MM,column_major_layout> work;

            const long n = a.nr();

            wr.set_size(n,1);
            wi.set_size(n,1);

            if (jobvl == 'V')
                vl.set_size(n,n);
            else
                vl.set_size(NR4?NR4:1, NC4?NC4:1);

            if (jobvr == 'V')
                vr.set_size(n,n);
            else
                vr.set_size(NR5?NR5:1, NC5?NC5:1);


            // figure out how big the workspace needs to be.
            T work_size = 1;
            int info = binding::geev(jobvl, jobvr, n, &a(0,0),
                                     a.nr(), &wr(0,0), &wi(0,0), &vl(0,0),
                                     vl.nr(), &vr(0,0), vr.nr(), &work_size, 
                                     -1);

            if (info != 0)
                return info;

            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);

            // compute the actual decomposition 
            info = binding::geev(jobvl, jobvr, n, &a(0,0),
                                 a.nr(), &wr(0,0), &wi(0,0), &vl(0,0),
                                 vl.nr(), &vr(0,0), vr.nr(), &work(0,0), 
                                 work.size());

            return info;
        }

    // ------------------------------------------------------------------------------------

    }

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_LAPACk_GEEV_Hh_