This file is indexed.

/usr/include/dlib/control/lspi.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LSPI_Hh_
#define DLIB_LSPI_Hh_

#include "lspi_abstract.h"
#include "approximate_linear_models.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor
        >
    class lspi
    {
    public:
        typedef feature_extractor feature_extractor_type;
        typedef typename feature_extractor::state_type state_type;
        typedef typename feature_extractor::action_type action_type;

        explicit lspi(
            const feature_extractor& fe_
        ) : fe(fe_)
        {
            init();
        }

        lspi(
        )
        {
            init();
        }

        double get_discount (
        ) const { return discount; }

        void set_discount (
            double value
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0 < value && value <= 1,
                "\t void lspi::set_discount(value)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t value: " << value 
                );
            discount = value;
        }

        const feature_extractor& get_feature_extractor (
        ) const { return fe; }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

        void set_epsilon (
            double eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void lspi::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps_: " << eps_ 
                );
            eps = eps_;
        }

        double get_epsilon (
        ) const
        { 
            return eps;
        }

        void set_lambda (
            double lambda_ 
        ) 
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(lambda_ >= 0,
                "\t void lspi::set_lambda(lambda_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t lambda_: " << lambda_ 
                );
            lambda = lambda_;
        }

        double get_lambda (
        ) const 
        { 
            return lambda; 
        }

        void set_max_iterations (
            unsigned long max_iter
        ) { max_iterations = max_iter; }

        unsigned long get_max_iterations (
        ) { return max_iterations; }

        template <typename vector_type>
        policy<feature_extractor> train (
            const vector_type& samples
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(samples.size() > 0,
                "\t policy lspi::train(samples)"
                << "\n\t invalid inputs were given to this function"
                );

            matrix<double,0,1> w(fe.num_features());
            w = 0;
            matrix<double,0,1> prev_w, b, f1, f2;

            matrix<double> A;

            double change; 
            unsigned long iter = 0;
            do
            {
                A = identity_matrix<double>(fe.num_features())*lambda;
                b = 0;
                for (unsigned long i = 0; i < samples.size(); ++i)
                {
                    fe.get_features(samples[i].state, samples[i].action, f1);
                    fe.get_features(samples[i].next_state, 
                                    fe.find_best_action(samples[i].next_state,w), 
                                    f2);
                    A += f1*trans(f1 - discount*f2);
                    b += f1*samples[i].reward;
                }

                prev_w = w;
                if (feature_extractor::force_last_weight_to_1)
                    w = join_cols(pinv(colm(A,range(0,A.nc()-2)))*(b-colm(A,A.nc()-1)),mat(1.0));
                else
                    w = pinv(A)*b;

                change = length(w-prev_w);
                ++iter;

                if (verbose)
                    std::cout << "iteration: " << iter << "\tchange: " << change << std::endl;

            } while(change > eps && iter < max_iterations);

            return policy<feature_extractor>(w,fe);
        }


    private:

        void init()
        {
            lambda = 0.01;
            discount = 0.8;
            eps = 0.01;
            verbose = false;
            max_iterations = 100;
        }

        double lambda;
        double discount;
        double eps;
        bool verbose;
        unsigned long max_iterations;
        feature_extractor fe;
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_LSPI_Hh_