This file is indexed.

/usr/include/cvc3/variable.h is in libcvc3-dev 2.4.1-5.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/*****************************************************************************/
/*!
 * \file variable.h
 * 
 * Author: Sergey Berezin
 * 
 * Created: Fri Apr 25 11:52:17 2003
 *
 * <hr>
 *
 * License to use, copy, modify, sell and/or distribute this software
 * and its documentation for any purpose is hereby granted without
 * royalty, subject to the terms and conditions defined in the \ref
 * LICENSE file provided with this distribution.
 * 
 * <hr>
 * 
 * A data structure representing a variable in the search engine.  It
 * is a smart pointer with a uniquifying mechanism similar to Expr,
 * and a variable is uniquely determined by its expression.  It can be
 * thought of as an Expr with additional attributes, but the type is
 * different, so it will not be confused with other Exprs.
 */
/*****************************************************************************/

#ifndef _cvc3__variable_h_
#define _cvc3__variable_h_

#include "expr.h"

namespace CVC3 {

  class VariableManager;
  class VariableValue;
  class Clause;
  class SearchEngineRules;

  // The main "smart pointer" class
  class Variable {
  private:
    VariableValue* d_val;
    // Private methods
    Theorem deriveThmRec(bool checkAssump) const;
  public:
    // Default constructor
    Variable(): d_val(NULL) { }
    // Constructor from an Expr; if such variable already exists, it
    // will be found and used.
    Variable(VariableManager* vm, const Expr& e);
    // Copy constructor
    Variable(const Variable& l);
    // Destructor
    ~Variable();
    // Assignment
    Variable& operator=(const Variable& l);

    bool isNull() const { return d_val == NULL; }

    // Accessors

    // Expr is the only constant attribute of a variable; other
    // attributes can be changed.
    const Expr& getExpr() const;
    // The Expr of the inverse of the variable.  This function is
    // caching, so !e is only constructed once.
    const Expr& getNegExpr() const;
    
    // IMPORTANT: Value can be -1 (false), 1 (true), or 0 (unresolved)
    int getValue() const;
    // If the value is set, scope level and either a theorem or
    // an antecedent clause must be defined
    int getScope() const;
    const Theorem& getTheorem() const;
    const Clause& getAntecedent() const;
    // Index of this variable in the antecedent clause; if it is -1,
    // the variable is FALSE, and that clause caused the contradiction
    int getAntecedentIdx() const;
    // Theorem of the form l |- l produced by the 'assump' rule, if
    // this variable is a splitter, or a new intermediate assumption
    // is generated for it.
    const Theorem& getAssumpThm() const;
    // Setting the attributes: it can be either derived from the
    // antecedent clause, or by a theorem.  The scope level is set to
    // the current scope.
    void setValue(int val, const Clause& c, int idx);
    // The theorem's expr must be the same as the variable's expr or
    // its negation, and the scope is the lowest scope where all
    // assumptions of the theorem are true
    void setValue(const Theorem& thm);
    void setValue(const Theorem& thm, int scope);
    
    void setAssumpThm(const Theorem& a, int scope);
    // Derive the theorem for either the variable or its negation.  If
    // the value is set by a theorem, that theorem is returned;
    // otherwise a unit propagation rule is applied to the antecedent
    // clause.
    Theorem deriveTheorem() const;

    // Accessing Chaff counters (read and modified by reference)
    unsigned& count(bool neg);
    unsigned& countPrev(bool neg);
    int& score(bool neg);
    bool& added(bool neg);
    // Read-only versions
    unsigned count(bool neg) const;
    unsigned countPrev(bool neg) const;
    int score(bool neg) const;
    bool added(bool neg) const;
    // Watch pointer access
    std::vector<std::pair<Clause, int> >& wp(bool neg) const;
    // Friend methods
    friend bool operator==(const Variable& l1, const Variable& l2) {
      return l1.d_val == l2.d_val;
    }
    // Printing
    friend std::ostream& operator<<(std::ostream& os, const Variable& l);
    std::string toString() const;
  }; // end of class Variable

  class Literal {
  private:
    Variable d_var;
    bool d_negative;
  public:
    // Constructors: from a variable
    Literal(const Variable& v, bool positive = true)
      : d_var(v), d_negative(!positive) { }
    // Default constructor
    Literal(): d_negative(false) { }
    // from Expr: if e == !e', construct negative literal of e',
    // otherwise positive of e
    Literal(VariableManager* vm, const Expr& e)
      : d_var(vm, (e.isNot())? e[0] : e), d_negative(e.isNot()) { }
    Variable& getVar() { return d_var; }
    const Variable& getVar() const { return d_var; }
    bool isPositive() const { return !d_negative; }
    bool isNegative() const { return d_negative; }
    bool isNull() const { return d_var.isNull(); }
    // Return var or !var
    const Expr& getExpr() const {
      if(d_negative) return d_var.getNegExpr();
      else return d_var.getExpr();
    }
    int getValue() const {
      if(d_negative) return -(d_var.getValue());
      else return d_var.getValue();
    }
    int getScope() const { return getVar().getScope(); }
    // Set the value of the literal
//     void setValue(int val, const Clause& c, int idx) {
//       d_var.setValue(d_negative? -val : val, c, idx);
//     }
    void setValue(const Theorem& thm) {
      d_var.setValue(thm, thm.getScope());
    }
    void setValue(const Theorem& thm, int scope) {
      d_var.setValue(thm, scope);
    }
    const Theorem& getTheorem() const { return d_var.getTheorem(); }
//     const Clause& getAntecedent() const { return d_var.getAntecedent(); }
//     int getAntecedentIdx() const { return d_var.getAntecedentIdx(); }
    // Defined when the literal has a value.  Derives a theorem
    // proving either this literal or its inverse.
    Theorem deriveTheorem() const { return d_var.deriveTheorem(); }
    // Accessing Chaff counters (read and modified by reference)
    unsigned& count() { return d_var.count(d_negative); }
    unsigned& countPrev() { return d_var.countPrev(d_negative); }
    int& score() { return d_var.score(d_negative); }
    bool& added() { return d_var.added(d_negative); }
    // Read-only versions
    unsigned count() const { return d_var.count(d_negative); }
    unsigned countPrev() const { return d_var.countPrev(d_negative); }
    int score() const { return d_var.score(d_negative); }
    bool added() const { return d_var.added(d_negative); }
    // Watch pointer access
    std::vector<std::pair<Clause, int> >& wp() const
      { return d_var.wp(d_negative); }
    // Printing
    friend std::ostream& operator<<(std::ostream& os, const Literal& l);
    std::string toString() const;
    // Equality
    friend bool operator==(const Literal& l1, const Literal& l2) {
      return (l1.d_negative == l2.d_negative && l1.d_var==l1.d_var);
    }
  }; // end of class Literal

  // Non-member methods: negation of Variable and Literal
  inline Literal operator!(const Variable& v) {
    return Literal(v, false);
  }

  inline Literal operator!(const Literal& l) {
    return Literal(l.getVar(), l.isNegative());
  }

  std::ostream& operator<<(std::ostream& os, const Literal& l);

} // end of namespace CVC3

// Clause uses class Variable, have to include it here
#include "clause.h"

namespace CVC3 {

  // The value holding class
  class VariableValue {
    friend class Variable;
    friend class VariableManager;
  private:
    VariableManager* d_vm;
    int d_refcount;

    Expr d_expr;
    // The inverse expression (initally Null)
    Expr d_neg;

    // Non-backtracking attributes (Chaff counters)

    // For positive instances
    unsigned d_count;
    unsigned d_countPrev;
    int d_score;
    // For negative instances
    unsigned d_negCount;
    unsigned d_negCountPrev;
    int d_negScore;
    // Whether the corresponding literal is in the list of active literals
    bool d_added;
    bool d_negAdded;
    // Watch pointer lists
    std::vector<std::pair<Clause, int> > d_wp;
    std::vector<std::pair<Clause, int> > d_negwp;

    // Backtracking attributes

    // Value of the variable: -1 (false), 1 (true), 0 (unresolved)
    CDO<int>* d_val;
    CDO<int>* d_scope; // Scope level where the variable is assigned
    // Theorem of the form (d_expr) or (!d_expr), reflecting d_val
    CDO<Theorem>* d_thm;
    CDO<Clause>* d_ante; // Antecedent clause and index of the variable
    CDO<int>* d_anteIdx;
    CDO<Theorem>* d_assump; // Theorem generated by assump rule, if any
    // Constructor is private; only class Variable can create it
    VariableValue(VariableManager* vm, const Expr& e)
      : d_vm(vm), d_refcount(0), d_expr(e),
      d_count(0), d_countPrev(0), d_score(0),
      d_negCount(0), d_negCountPrev(0), d_negScore(0),
      d_added(false), d_negAdded(false),
      d_val(NULL), d_scope(NULL), d_thm(NULL),
      d_ante(NULL), d_anteIdx(NULL), d_assump(NULL) { }
  public:
    ~VariableValue();
    // Accessor methods
    const Expr& getExpr() const { return d_expr; }

    const Expr& getNegExpr() const {
      if(d_neg.isNull()) {
	const_cast<VariableValue*>(this)->d_neg
	  = d_expr.negate();
      }
      return d_neg;
    }

    int getValue() const {
      if(d_val==NULL) return 0;
      else return d_val->get();
    }
    
    int getScope() const {
      if(d_scope==NULL) return 0;
      else return d_scope->get();
    }

    const Theorem& getTheorem() const {
      static Theorem null;
      if(d_thm==NULL) return null;
      else return d_thm->get();
    }

    const Clause& getAntecedent() const {
      static Clause null;
      if(d_ante==NULL) return null;
      else return d_ante->get();
    }

    int getAntecedentIdx() const {
      if(d_anteIdx==NULL) return 0;
      else return d_anteIdx->get();
    }
    
    const Theorem& getAssumpThm() const {
      static Theorem null;
      if(d_assump==NULL) return null;
      else return d_assump->get();
    }

    // Setting the attributes: it can be either derived from the
    // antecedent clause, or by a theorem
    void setValue(int val, const Clause& c, int idx);
    // The theorem's expr must be the same as the variable's expr or
    // its negation
    void setValue(const Theorem& thm, int scope);

    void setAssumpThm(const Theorem& a, int scope);

    // Chaff counters: read and modified by reference
    unsigned& count(bool neg) {
      if(neg) return d_negCount;
      else return d_count;
    }
    unsigned& countPrev(bool neg) {
      if(neg) return d_negCountPrev;
      else return d_countPrev;
    }
    int& score(bool neg) {
      if(neg) return d_negScore;
      else return d_score;
    }
    bool& added(bool neg) {
      if(neg) return d_negAdded;
      else return d_added;
    }

    // Memory management
    void* operator new(size_t size, MemoryManager* mm) {
      return mm->newData(size);
    }
    void operator delete(void* pMem, MemoryManager* mm) {
      mm->deleteData(pMem);
    }
    void operator delete(void*) { }

    // friend methods
    friend std::ostream& operator<<(std::ostream& os, const VariableValue& v);
    friend bool operator==(const VariableValue& v1, const VariableValue& v2) {
      return v1.d_expr == v2.d_expr;
    }
  }; // end of class VariableValue

    // Accessing Chaff counters (read and modified by reference)
  inline unsigned& Variable::count(bool neg) { return d_val->count(neg); }
  inline unsigned& Variable::countPrev(bool neg)
    { return d_val->countPrev(neg); }
  inline int& Variable::score(bool neg) { return d_val->score(neg); }
  inline bool& Variable::added(bool neg) { return d_val->added(neg); }

  inline unsigned Variable::count(bool neg) const { return d_val->count(neg); }
  inline unsigned Variable::countPrev(bool neg) const
    { return d_val->countPrev(neg); }
  inline int Variable::score(bool neg) const { return d_val->score(neg); }
  inline bool Variable::added(bool neg) const { return d_val->added(neg); }

  inline std::vector<std::pair<Clause, int> >& Variable::wp(bool neg) const {
    if(neg) return d_val->d_negwp;
    else return d_val->d_wp;
  }


  class VariableManagerNotifyObj;

  // The manager class
  class VariableManager {
    friend class Variable;
    friend class VariableValue;
  private:
    ContextManager* d_cm;
    MemoryManager* d_mm;
    SearchEngineRules* d_rules;
    VariableManagerNotifyObj* d_notifyObj;
    //! Disable the garbage collection
    /*! Normally, it's set in the destructor, so that we can delete
     * all remaining variables without GC getting in the way
     */
    bool d_disableGC;
    //! Postpone garbage collection
    bool d_postponeGC;
    //! Vector of variables to be deleted (postponed during pop())
    std::vector<VariableValue*> d_deleted;
    
    // Hash only by the Expr
    class HashLV {
    public:
      size_t operator()(VariableValue* v) const { return v->getExpr().hash(); }
    };
    class EqLV {
    public:
      bool operator()(const VariableValue* lv1, const VariableValue* lv2) const
	{ return lv1->getExpr() == lv2->getExpr(); }
    };

    // Hash set for existing variables
    typedef std::hash_set<VariableValue*, HashLV, EqLV> VariableValueSet;
    VariableValueSet d_varSet;
    
    // Creating unique VariableValue
    VariableValue* newVariableValue(const Expr& e);

  public:
    // Constructor.  mmFlag indicates which memory manager to use.
    VariableManager(ContextManager* cm, SearchEngineRules* rules,
		    const std::string& mmFlag);
    // Destructor
    ~VariableManager();

    //! Garbage collect VariableValue pointer
    void gc(VariableValue* v);
    //! Postpone garbage collection
    void postponeGC() { d_postponeGC = true; }
    //! Resume garbage collection
    void resumeGC();
    // Accessors
    ContextManager* getCM() const { return d_cm; }
    SearchEngineRules* getRules() const { return d_rules; }

  }; // end of class VariableManager

/*****************************************************************************/
/*!
 *\class VariableManagerNotifyObj
 *\brief Notifies VariableManager before and after each pop()
 *
 * Author: Sergey Berezin
 *
 * Created: Tue Mar  1 13:52:28 2005
 *
 * Disables the deletion of VariableValue objects during context
 * restoration (backtracking).  This solves the problem of circular
 * dependencies (e.g. a Variable pointing to its antecedent Clause).
 */
/*****************************************************************************/
  class VariableManagerNotifyObj: public ContextNotifyObj {
    VariableManager* d_vm;
  public:
    //! Constructor
  VariableManagerNotifyObj(VariableManager* vm, Context* cxt)
    : ContextNotifyObj(cxt), d_vm(vm) { }
    
    void notifyPre(void) { d_vm->postponeGC(); }
    void notify(void) { d_vm->resumeGC(); }
  };


} // end of namespace CVC3
#endif