This file is indexed.

/usr/include/cpl_filter.h is in libcpl-dev 7.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/* $Id: cpl_filter.h,v 1.25 2012-12-14 13:50:08 llundin Exp $
 *
 * This file is part of the ESO Common Pipeline Library
 * Copyright (C) 2001-2008 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * $Author: llundin $
 * $Date: 2012-12-14 13:50:08 $
 * $Revision: 1.25 $
 * $Name: not supported by cvs2svn $
 */

#ifndef CPL_FILTER_H
#define CPL_FILTER_H

#include <cpl_macros.h>

CPL_BEGIN_DECLS

/*----------------------------------------------------------------------------*/
/**
 * @defgroup cpl_filter Filters
 *
 * This module provides definitions for filtering of a
 * @c cpl_image and a @c cpl_mask. The actual filtering functions are defined
 * in the @c cpl_image and @c cpl_mask modules.
 *
 * @par Synopsis:
 * @code
 *   #include "cpl_filter.h"
 * @endcode
 */
/*----------------------------------------------------------------------------*/

/**@{*/

/*-----------------------------------------------------------------------------
                                   New types
 -----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/**
 * 
 * @brief These are the supported border modes.
 * For a kernel of width 2n+1, the n left- and rightmost image/mask
 * columns do not have elements for the whole kernel. The same holds for the
 * top and bottom image/mask rows. The border mode defines the filtering of
 * such border pixels.
 * 
 */
/*----------------------------------------------------------------------------*/

enum _cpl_border_mode_
{
    CPL_BORDER_FILTER,
    /**<
         Filter the border using the reduced number of pixels. If in median
         filtering the number of pixels is even choose the mean of the two
         central values, after the borders have been filled with a chess-like
         pattern of +- inf 
    */

    CPL_BORDER_ZERO,
    /**<
         Set the border of the filtered image/mask to zero.
    */

    CPL_BORDER_CROP,
    /**<
         Crop the filtered image/mask.
    */

    CPL_BORDER_NOP,
    /**<
         Do not modify the border of the filtered image/mask.
    */

    CPL_BORDER_COPY
    /**<
         Copy the border of the input image/mask.
    */

};

/**
 * @brief
 *   The border mode type.
 */

typedef enum _cpl_border_mode_ cpl_border_mode;


/*----------------------------------------------------------------------------*/
/**
 * 
 * @brief These are the supported filter modes.
 * 
 */
/*----------------------------------------------------------------------------*/

enum _cpl_filter_mode_
{

    CPL_FILTER_EROSION,
    /**<
      The erosion filter (for a @c cpl_mask).

       @see cpl_mask_filter()
    */

    CPL_FILTER_DILATION,
    /**<
      The dilation filter (for a @c cpl_mask).

       @see cpl_mask_filter()
    */

    CPL_FILTER_OPENING,
    /**<
         The opening filter (for a @c cpl_mask).

       @see cpl_mask_filter()
    */

    CPL_FILTER_CLOSING,
    /**<
         The closing filter (for a @c cpl_mask).

       @see cpl_mask_filter()
    */

    CPL_FILTER_LINEAR,
    /**<
        A linear filter (for a @c cpl_image). The kernel elements are normalized
        with the sum of their absolute values. This implies that there must be
        at least one non-zero element in the kernel. The normalisation makes the
        kernel useful for filtering where flux conservation is desired.

        The kernel elements are thus used as weights like this:
 
    @verbatim
    Kernel          Image        ...
           1 2 3         ... 1.0 2.0 3.0 ...
           4 5 6         ... 4.0 5.0 6.0 ...
           7 8 9         ... 7.0 8.0 9.0 ...
                                 ...
    @endverbatim
  
         The filtered value corresponding to the pixel whose value is 5.0 is:
         \f$\frac{(1*1.0+2*2.0+3*3.0+4*4.0+5*5.0+6*6.0+7*7.0+8*8.0+9*9.0)}
                 {1+2+3+4+5+6+7+8+9}\f$

       Filtering with @c CPL_FILTER_LINEAR and a flat kernel can be done faster
       with @c CPL_FILTER_AVERAGE.

       @see CPL_FILTER_LINEAR_SCALE, CPL_FILTER_AVERAGE, cpl_image_filter()
    */

    CPL_FILTER_LINEAR_SCALE,
    /**<
        A linear filter (for a @c cpl_image). Unlike @c CPL_FILTER_LINEAR the
        kernel elements are not normalized, so the filtered image will have
        its flux scaled with the sum of the weights of the kernel. Examples
        of linear, scaling kernels are gradient operators and edge detectors.

        The kernel elements are thus applied like this:
 
    @verbatim
    Kernel          Image        ...
           1 2 3         ... 1.0 2.0 3.0 ...
           4 5 6         ... 4.0 5.0 6.0 ...
           7 8 9         ... 7.0 8.0 9.0 ...
                                 ...
    @endverbatim
  
         The filtered value corresponding to the pixel whose value is 5.0 is:
         \f$1*1.0+2*2.0+3*3.0+4*4.0+5*5.0+6*6.0+7*7.0+8*8.0+9*9.0\f$

       @see CPL_FILTER_LINEAR, cpl_image_filter()
    */

    CPL_FILTER_AVERAGE,
    /**<
         An average filter, i.e. the output pixel is the
         arithmetic average of the surrounding (1 + 2 * hsizex)
         * (1 + 2 * hsizey) pixels.
         The cost per pixel is O(hsizex*hsizey).
         The two images may have different pixel types.
         When the input and output pixel types
         are identical, the arithmetic is done with that type,
         e.g. int for two integer images. When the input and
         output pixel types differ, the arithmetic is done in
         double precision when one of the two images have
         pixel type CPL_TYPE_DOUBLE, otherwise float is used.

       @see CPL_FILTER_AVERAGE_FAST, cpl_image_filter_mask()
    */

    CPL_FILTER_AVERAGE_FAST,
    /**<
         The same as @c CPL_FILTER_AVERAGE, except that it uses a running
         average, which will lead to a significant loss of precision if
         there are large differences in the magnitudes of the input pixels.
         The cost per pixel is O(1) if all elements in the kernel are used,
         otherwise the filtering is done as for CPL_FILTER_AVERAGE.

       @see cpl_image_filter_mask()
    */

    CPL_FILTER_MEDIAN,
    /**<
         A median filter (for a @c cpl_image). The pixel types of the input
         and output images must be identical.

       @see cpl_image_filter_mask()
    */

    CPL_FILTER_STDEV,
    /**<
         The filtered value is the standard deviation of the included
         input pixels.
 
       @verbatim
       Kernel                Image        ...
              1   0   1           ... 1.0 2.0 3.0 ...
              0   1   0           ... 4.0 5.0 6.0 ...
              1   0   1           ... 7.0 8.0 9.0 ...
                                          ...
       @endverbatim
 
         The pixel with value 5.0 will have a filtered value of:
         std_dev(1.0, 3.0, 5.0, 7.0, 9.0)
 

       @see CPL_FILTER_STDEV_FAST, cpl_image_filter_mask()
    */

    CPL_FILTER_STDEV_FAST,
    /**<
         The same as @c CPL_FILTER_STDEV, except that it uses the same running
         method employed in @c CPL_FILTER_AVERAGE_FAST, which will lead to a
         significant loss of precision if there are large differences in the
         magnitudes of the input pixels. As for @c CPL_FILTER_AVERAGE_FAST, the
         cost per pixel is O(1) if all elements are used, otherwise the
         filtering is done as for @c CPL_FILTER_STDEV.

       @see cpl_image_filter_mask()
    */

    CPL_FILTER_MORPHO,
    /**<
        A morphological filter (for a @c cpl_image). The kernel elements are
        normalized with the sum of their absolute values. This implies that
        there must be at least one non-zero element in the kernel. The
        normalisation makes the kernel useful for filtering where flux
        conservation is desired.

        The kernel elements are used as weights on the sorted values covered by
        the kernel:
 
    @verbatim
    Kernel          Image        ...
           1 2 3         ... 4.0 6.0 5.0 ...
           4 5 6         ... 3.0 1.0 2.0 ...
           7 8 9         ... 7.0 8.0 9.0 ...
                                 ...
    @endverbatim
 
         The filtered value corresponding to the pixel whose value is 5.0 is:
   \f$\frac{(1*1.0+2*2.0+3*3.0+4*4.0+5*5.0+6*6.0+7*7.0+8*8.0+9*9.0)}
           {1+2+3+4+5+6+7+8+9}\f$

       @see CPL_FILTER_MORPHO_SCALE, cpl_image_filter()
    */

    CPL_FILTER_MORPHO_SCALE
    /**<
        A morphological filter (for a @c cpl_image). Unlike @c CPL_FILTER_MORPHO
        the kernel elements are not normalized, so the filtered image will have
        its flux scaled with the sum of the weights of the kernel.

        The kernel elements are thus applied to the sorted values covered by
        the kernel:
 
    @verbatim
    Kernel          Image        ...
           1 2 3         ... 4.0 6.0 5.0 ...
           4 5 6         ... 3.0 1.0 2.0 ...
           7 8 9         ... 7.0 8.0 9.0 ...
                                 ...
    @endverbatim
 
         The filtered value corresponding to the pixel whose value is 5.0 is:
   \f$1*1.0+2*2.0+3*3.0+4*4.0+5*5.0+6*6.0+7*7.0+8*8.0+9*9.0\f$

       @see CPL_FILTER_MORPHO, cpl_image_filter()
    */

};

/**
 * @brief
 *   The filter mode type.
 */

typedef enum _cpl_filter_mode_ cpl_filter_mode;

/**@}*/

CPL_END_DECLS

#endif