This file is indexed.

/usr/include/cln/object.h is in libcln-dev 1.3.4-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// General object definitions: pointers, reference counting, garbage collection.

#ifndef _CL_OBJECT_H
#define _CL_OBJECT_H

#include "cln/types.h"
#include "cln/modules.h"
#include <cstdlib>

namespace cln {

// We don't have to deal with circular structures, so normal reference counting
// is sufficient. Is also has the advantage of being mostly non-interrupting.


// An object is either a pointer to heap allocated data
//              or immediate data.

// It is possible to distinguish these because pointers are aligned.
// cl_word_alignment is the guaranteed alignment of a `void*' or `long'
// in memory. Must be > 1.
#if defined(__m68k__)
  #define cl_word_alignment  2
#endif
#if defined(__i386__) || (defined(__mips__) && !defined(__LP64__)) || (defined(__sparc__) && !defined(__arch64__)) || defined(__hppa__) || defined(__arm__) || defined(__rs6000__) || defined(__m88k__) || defined(__convex__) || (defined(__s390__) && !defined(__s390x__)) || defined(__sh__) || (defined(__x86_64__) && defined(__ILP32__))
  #define cl_word_alignment  4
#endif
#if defined(__alpha__) || defined(__ia64__) || defined(__mips64__) || defined(__powerpc64__) || (defined(__sparc__) && defined(__arch64__)) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(__s390x__) || defined(__aarch64__)
  #define cl_word_alignment  8
#endif
#if !defined(cl_word_alignment)
  #error "Define cl_word_alignment for your CPU!"
#endif


// Four basic classes are introduced:
//
//   gcobject      rcobject
//
//   gcpointer     rcpointer
//
// `gcobject' = garbage collectible object (pointer or immediate),
// `gcpointer' = garbage collectible pointer,
// `rcobject' = reference counted object (pointer or immediate),
// `rcpointer' = reference counted pointer.
//
// "garbage collectible" means that a reference count is maintained, and
// when the reference count drops to 0, the object is freed. This is useful
// for all kind of short- or long-lived objects.
// "reference counted" means that a reference count is maintained, which
// cannot drop to 0. This is useful for objects which are registered in a
// global cache table, in order to know which objects can be thrown away
// when the cache is cleaned. (If the cache were never cleaned, its objects
// would never be freed, and we could get away with normal C pointers.)
//
// It is permissible to treat a `rcobject' as a `gcobject', and a `rcpointer'
// as a `gcpointer', but this just increases the destructor and copy-constructor
// overhead.
// It is also permissible to treat a `gcpointer' as a `gcobject', and a
// `rcpointer' as a `rcobject', but this just increases the destructor and
// copy-constructor overhead.


// Immediate data is a word, as wide as a pointer.
typedef sintP  cl_sint;
typedef uintP  cl_uint;  // This ought to be called `cl_word'.
#define cl_pointer_size intPsize
// NB: (cl_pointer_size==64) implies defined(HAVE_FAST_LONGLONG)
#if (cl_pointer_size==64)
  #define CL_WIDE_POINTERS
#endif

// Distinguish immediate data from pointers.
inline bool cl_pointer_p (cl_uint word)
{
	return (word & (cl_word_alignment-1)) == 0;
}
inline bool cl_immediate_p (cl_uint word)
{
	return (word & (cl_word_alignment-1)) != 0;
}

// Immediate data: Fixnum, Short Float, maybe Single Float.
// They have type tags.
//   |...............................|......|
//               cl_value             cl_tag

// Number of bits reserved for tagging information:
#if (cl_word_alignment <= 4)
  #define cl_tag_len	2
#else
  #define cl_tag_len	3
#endif
#define cl_tag_shift	0
#define cl_value_shift  (cl_tag_len+cl_tag_shift)
#define cl_value_len	(cl_pointer_size - cl_value_shift)
#define cl_tag_mask	(((1UL << cl_tag_len) - 1) << cl_tag_shift)
#define cl_value_mask	(((1UL << cl_value_len) - 1) << cl_value_shift)

// Return the tag of a word.
inline cl_uint cl_tag (cl_uint word)
{
	return (word & cl_tag_mask) >> cl_tag_shift;
}

// Return the value (unsigned) of a word.
inline cl_uint cl_value (cl_uint word)
{
	// This assumes cl_value_shift + cl_value_len == cl_pointer_size.
	return word >> cl_value_shift;
}

// Return a word, combining a value and a tag.
inline cl_uint cl_combine (cl_uint tag, cl_uint value)
{
	return (value << cl_value_shift) + (tag << cl_tag_shift);
}
inline cl_uint cl_combine (cl_uint tag, cl_sint value)
{
	// This assumes cl_value_shift + cl_value_len == cl_pointer_size.
	return (value << cl_value_shift) + (tag << cl_tag_shift);
}
// Keep the compiler happy.
inline cl_uint cl_combine (cl_uint tag, unsigned int value)
{ return cl_combine(tag, (cl_uint)value); }
inline cl_uint cl_combine (cl_uint tag, int value)
{ return cl_combine(tag, (cl_sint)value); }
#ifdef HAVE_LONGLONG
inline cl_uint cl_combine (cl_uint tag, unsigned long long value)
{ return cl_combine(tag, (cl_uint)value); }
inline cl_uint cl_combine (cl_uint tag, long long value)
{ return cl_combine(tag, (cl_uint)value); }
#endif

// Definition of the tags.
#if !defined(CL_WIDE_POINTERS)
  #if (cl_word_alignment == 2)
    #define cl_FN_tag	1
    #define cl_SF_tag	3	// must satisfy the cl_immediate_p predicate!
  #endif
  #if (cl_word_alignment == 4)
    #define cl_FN_tag	1
    #define cl_SF_tag	2
  #endif
#else // CL_WIDE_POINTERS
  // Single Floats are immediate as well.
  #define cl_FN_tag	1
  #define cl_SF_tag	2
  #define cl_FF_tag	3
#endif

// Corresponding classes.
extern const struct cl_class * cl_immediate_classes [1<<cl_tag_len];


// Heap allocated data contains a header, for two purposes:
// - dynamic typing,
// - reference count (a portable alternative to garbage collection,
//   or the basis for a portable and interoperable garbage collection).
struct cl_heap {
	int refcount;			// reference count
	const struct cl_class * type;	// type tag
};

// Function to destroy the contents of a heap object.
typedef void (*cl_heap_destructor_function) (cl_heap* pointer);
// Flags, may be ORed together.
#define cl_class_flags_subclass_complex   1  // all instances belong to cl_N
#define cl_class_flags_subclass_real      2  // all instances belong to cl_R
#define cl_class_flags_subclass_float     4  // all instances belong to cl_F
#define cl_class_flags_subclass_rational  8  // all instances belong to cl_RA
#define cl_class_flags_number_ring       16  // all instances are rings whose
                                             // elements belong to cl_number
#define cl_class_flags_modint_ring       32  // all instances are rings whose
                                             // elements belong to cl_MI
#define cl_class_flags_univpoly_ring     64  // all instances are rings whose
                                             // elements belong to cl_UP
// Function to print an object for debugging, to cerr.
typedef void (*cl_heap_dprint_function) (cl_heap* pointer);

struct cl_class {
	cl_heap_destructor_function destruct;
	int flags;
	cl_heap_dprint_function dprint;
};

// Free an object on heap.
extern void cl_free_heap_object (cl_heap* pointer);

// Debugging support for dynamic typing: Register a debugging print function.
#define cl_register_type_printer(type,printer)  \
  { extern cl_class type; type.dprint = (printer); }


// cl_private_thing: An immediate value or a pointer into the heap.
// This must be as wide as a `cl_uint'.
// (Actually, this ought to be a  union { void*; cl_uint; }, but using
// a pointer type generates better code.)
// Never throw away a cl_private_thing, or reference counts will be wrong!
typedef struct cl_anything * cl_private_thing;

// Increment the reference count.
inline void cl_inc_pointer_refcount (cl_heap* pointer)
{
	pointer->refcount++;
}

// Decrement the reference count of a garbage collected pointer.
inline void cl_gc_dec_pointer_refcount (cl_heap* pointer)
{
	if (--pointer->refcount == 0)
		cl_free_heap_object(pointer);
}
// Decrement the reference count of a reference counted pointer.
inline void cl_rc_dec_pointer_refcount (cl_heap* pointer)
{
	--pointer->refcount;
}

// Increment the reference count.
// This must be a macro, not an inline function, because pointer_p() and
// inc_pointer_refcount() are non-virtual member functions, so that the
// compiler can optimize it.
#define cl_inc_refcount(x)  \
	if ((x).pointer_p())					\
		(x).inc_pointer_refcount();			\

// Decrement the reference count.
// This must be a macro, not an inline function, because pointer_p() and
// dec_pointer_refcount() are non-virtual member functions, so that the
// compiler can optimize it.
#define cl_dec_refcount(x)  \
	if ((x).pointer_p())					\
		(x).dec_pointer_refcount();			\

// The declaration of a copy constructor.
// Restriction: The base class's default constructor must do nothing or
// initialize `pointer' to a constant expression.
#define CL_DEFINE_COPY_CONSTRUCTOR1(_class_)			\
	_CL_DEFINE_COPY_CONSTRUCTOR1(_class_,_class_)
#define _CL_DEFINE_COPY_CONSTRUCTOR1(_class_,_classname_)	\
inline _class_::_classname_ (const _class_& x)			\
{								\
	cl_uint x_word = x.word;				\
	cl_inc_refcount(x);					\
	this->word = x_word;					\
}

// The declaration of a copy constructor.
// Restriction: The base class must have the usual `cl_private_thing'
// constructor. Drawback: The base class must be known here.
#define CL_DEFINE_COPY_CONSTRUCTOR2(_class_,_baseclass_)		\
	_CL_DEFINE_COPY_CONSTRUCTOR2(_class_,_class_,_baseclass_)
#define _CL_DEFINE_COPY_CONSTRUCTOR2(_class_,_classname_,_baseclass_) \
inline _class_::_classname_ (const _class_& x)			\
	: _baseclass_ (as_cl_private_thing(x)) {}

// The declaration of an assignment operator.
#define CL_DEFINE_ASSIGNMENT_OPERATOR(dest_class,src_class)	\
inline dest_class& dest_class::operator= (const src_class& x)	\
{								\
	/* Be careful, we might be assigning x to itself. */	\
	cl_uint x_word = x.word;				\
	cl_inc_refcount(x);					\
	cl_dec_refcount(*this);					\
	this->word = x_word;					\
	return *this;						\
}

// We have a small problem with destructors: The specialized destructor
// of a leaf class such as `cl_SF' should be more efficient than the
// general destructor for `cl_N'. Since (by C++ specs) destructing a cl_SF
// would run the destructors for cl_SF, cl_F, cl_R, cl_N (in that order),
// and in the last step the compiler does not know any more that the object
// actually is a cl_SF, there is no way to optimize the destructor!
// ("progn-reversed" method combination is evil.)
// And if we define "mirror"/"shadow" classes with no destructors (such
// that `cl_F' inherits from `cl_F_no_destructor' buts adds a destructor)
// then we need to add explicit conversion operators cl_SF -> cl_F -> cl_R ...,
// with the effect that calling an overloaded function like `as_cl_F'
// (which has two signatures `as_cl_F(cl_number)' and `as_cl_F(cl_F)')
// with a cl_SF argument gives an "call of overloaded function is ambiguous"
// error.
// There is no help: If we want overloaded functions to be callable in a way
// that makes sense, `cl_SF' has to be a subclass of `cl_F', and then the
// destructor of `cl_SF' will do at least as much computation as the `cl_F'
// destructor. Praise C++ ! :-((
// (Even making `pointer_p()' a virtual function would not help.)


// This is obnoxious.
template <class key1_type, class value_type> struct cl_htentry1;

// The four concrete classes of all objects.

class cl_gcobject {
public: /* ugh */
	union {
		void*   pointer;
		cl_heap* heappointer;
		cl_uint word;
	};
public:
// Default constructor. (Used for objects with no initializer.)
	cl_gcobject ();
// Destructor. (Used when a variable goes out of scope.)
	~cl_gcobject ();
// Copy constructor.
	cl_gcobject (const cl_gcobject&);
// Assignment operator.
	cl_gcobject& operator= (const cl_gcobject&);
// Distinguish immediate data from pointer.
	bool pointer_p() const
		{ return cl_pointer_p(word); }
// Reference counting.
	void inc_pointer_refcount () const
		{ cl_inc_pointer_refcount(heappointer); }
	void dec_pointer_refcount () const
		{ cl_gc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
	cl_uint nonpointer_tag () const
		{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
	const cl_class * pointer_type () const
		{ return heappointer->type; }
// Private pointer manipulations.
	cl_private_thing _as_cl_private_thing () const;
// Private constructor.
	cl_gcobject (cl_private_thing p)
		: pointer (p) {}
// Debugging output.
	void debug_print () const;
// Ability to place an object at a given address.
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_gcobject::cl_gcobject () {}
inline cl_gcobject::~cl_gcobject () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_gcobject)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_gcobject,cl_gcobject)

class cl_gcpointer {
public: /* ugh */
	union {
		void*   pointer;
		cl_heap* heappointer;
		cl_uint word;
	};
public:
// Default constructor. (Used for objects with no initializer.)
	cl_gcpointer ();
// Destructor. (Used when a variable goes out of scope.)
	~cl_gcpointer ();
// Copy constructor.
	cl_gcpointer (const cl_gcpointer&);
// Assignment operator.
	cl_gcpointer& operator= (const cl_gcpointer&);
// Distinguish immediate data from pointer.
	bool pointer_p() const
		{ return true; }
// Reference counting.
	void inc_pointer_refcount () const
		{ cl_inc_pointer_refcount(heappointer); }
	void dec_pointer_refcount () const
		{ cl_gc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
	cl_uint nonpointer_tag () const
		{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
	const cl_class * pointer_type () const
		{ return heappointer->type; }
// Private pointer manipulations.
	cl_private_thing _as_cl_private_thing () const;
// Private constructor.
	cl_gcpointer (cl_private_thing p)
		: pointer (p) {}
// Debugging output.
	void debug_print () const;
// Ability to place an object at a given address.
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_gcpointer::cl_gcpointer () {}
inline cl_gcpointer::~cl_gcpointer () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_gcpointer)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_gcpointer,cl_gcpointer)

class cl_rcobject {
public: /* ugh */
	union {
		void*   pointer;
		cl_heap* heappointer;
		cl_uint word;
	};
public:
// Default constructor. (Used for objects with no initializer.)
	cl_rcobject ();
// Destructor. (Used when a variable goes out of scope.)
	~cl_rcobject ();
// Copy constructor.
	cl_rcobject (const cl_rcobject&);
// Assignment operator.
	cl_rcobject& operator= (const cl_rcobject&);
// Distinguish immediate data from pointer.
	bool pointer_p() const
		{ return cl_pointer_p(word); }
// Reference counting.
	void inc_pointer_refcount () const
		{ cl_inc_pointer_refcount(heappointer); }
	void dec_pointer_refcount () const
		{ cl_rc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
	cl_uint nonpointer_tag () const
		{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
	const cl_class * pointer_type () const
		{ return heappointer->type; }
// Private pointer manipulations.
	cl_private_thing _as_cl_private_thing () const;
// Private constructor.
	cl_rcobject (cl_private_thing p)
		: pointer (p) {}
// Debugging output.
	void debug_print () const;
// Ability to place an object at a given address.
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_rcobject::cl_rcobject () {}
inline cl_rcobject::~cl_rcobject () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_rcobject)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_rcobject,cl_rcobject)

class cl_rcpointer {
public: /* ugh */
	union {
		void*   pointer;
		cl_heap* heappointer;
		cl_uint word;
	};
public:
// Default constructor. (Used for objects with no initializer.)
	cl_rcpointer ();
// Destructor. (Used when a variable goes out of scope.)
	~cl_rcpointer ();
// Copy constructor.
	cl_rcpointer (const cl_rcpointer&);
// Assignment operator.
	cl_rcpointer& operator= (const cl_rcpointer&);
// Distinguish immediate data from pointer.
	bool pointer_p() const
		{ return true; }
// Reference counting.
	void inc_pointer_refcount () const
		{ cl_inc_pointer_refcount(heappointer); }
	void dec_pointer_refcount () const
		{ cl_rc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
	cl_uint nonpointer_tag () const
		{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
	const cl_class * pointer_type () const
		{ return heappointer->type; }
// Private pointer manipulations.
	cl_private_thing _as_cl_private_thing () const;
// Private constructor.
	cl_rcpointer (cl_private_thing p)
		: pointer (p) {}
// Debugging output.
	void debug_print () const;
// Ability to place an object at a given address.
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_rcpointer::cl_rcpointer () {}
inline cl_rcpointer::~cl_rcpointer () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_rcpointer)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_rcpointer,cl_rcpointer)

// Private pointer manipulations.

inline cl_private_thing cl_gcobject::_as_cl_private_thing () const
{
	cl_private_thing p = (cl_private_thing) pointer;
	cl_inc_refcount(*this);
	return p;
}
inline cl_private_thing as_cl_private_thing (const cl_gcobject& x)
{
	return x._as_cl_private_thing();
}

inline cl_private_thing cl_gcpointer::_as_cl_private_thing () const
{
	cl_private_thing p = (cl_private_thing) pointer;
	cl_inc_refcount(*this);
	return p;
}
inline cl_private_thing as_cl_private_thing (const cl_gcpointer& x)
{
	return x._as_cl_private_thing();
}

inline cl_private_thing cl_rcobject::_as_cl_private_thing () const
{
	cl_private_thing p = (cl_private_thing) pointer;
	cl_inc_refcount(*this);
	return p;
}
inline cl_private_thing as_cl_private_thing (const cl_rcobject& x)
{
	return x._as_cl_private_thing();
}

inline cl_private_thing cl_rcpointer::_as_cl_private_thing () const
{
	cl_private_thing p = (cl_private_thing) pointer;
	cl_inc_refcount(*this);
	return p;
}
inline cl_private_thing as_cl_private_thing (const cl_rcpointer& x)
{
	return x._as_cl_private_thing();
}

// Note: When we define a function that returns a class object by value,
// we normally return it as const value. The declarations
//            T func (...);                    (A)
// and
//            const T func (...);              (B)
// behave identically and generate identical code, except that the code
//            func(...) = foo;
// compiles fine with (A) but is an error (and yields a warning) with (B).
// We want this warning.

// Define a conversion operator from one object to another object of the
// same size.
  #define CL_DEFINE_CONVERTER(target_class)  \
    operator const target_class & () const				\
    {									\
      typedef int assert1 [2*(sizeof(target_class)==sizeof(*this))-1];	\
      return * (const target_class *) (void*) this;			\
    }

}  // namespace cln

#endif /* _CL_OBJECT_H */