This file is indexed.

/usr/include/cln/ffloat.h is in libcln-dev 1.3.4-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Public single float operations.

#ifndef _CL_FFLOAT_H
#define _CL_FFLOAT_H

#include "cln/number.h"
#include "cln/ffloat_class.h"
#include "cln/integer_class.h"
#include "cln/float.h"

namespace cln {

CL_DEFINE_AS_CONVERSION(cl_FF)


// Liefert zu einem Single-Float x : (- x), ein FF.
extern const cl_FF operator- (const cl_FF& x);

// compare(x,y) vergleicht zwei Single-Floats x und y.
// Ergebnis: 0 falls x=y, +1 falls x>y, -1 falls x<y.
extern cl_signean compare (const cl_FF& x, const cl_FF& y);

// equal_hashcode(x) liefert einen equal-invarianten Hashcode für x.
extern uint32 equal_hashcode (const cl_FF& x);

inline bool operator== (const cl_FF& x, const cl_FF& y)
	{ return compare(x,y)==0; }
inline bool operator!= (const cl_FF& x, const cl_FF& y)
	{ return compare(x,y)!=0; }
inline bool operator<= (const cl_FF& x, const cl_FF& y)
	{ return compare(x,y)<=0; }
inline bool operator< (const cl_FF& x, const cl_FF& y)
	{ return compare(x,y)<0; }
inline bool operator>= (const cl_FF& x, const cl_FF& y)
	{ return compare(x,y)>=0; }
inline bool operator> (const cl_FF& x, const cl_FF& y)
	{ return compare(x,y)>0; }

// minusp(x) == (< x 0)
extern bool minusp (const cl_FF& x);

// zerop(x) stellt fest, ob ein Single-Float x = 0.0 ist.
extern bool zerop (const cl_FF& x);

// plusp(x) == (> x 0)
extern bool plusp (const cl_FF& x);

// Liefert zu zwei Single-Float x und y : (+ x y), ein FF.
extern const cl_FF operator+ (const cl_FF& x, const cl_FF& y);
// The C++ compiler may hesitate to do these conversions of its own:
inline const cl_FF operator+ (const cl_FF& x, const float y)
	{ return x + cl_FF(y); }
inline const cl_FF operator+ (const float x, const cl_FF& y)
	{ return cl_FF(x) + y; }

// Liefert zu zwei Single-Float x und y : (- x y), ein FF.
extern const cl_FF operator- (const cl_FF& x, const cl_FF& y);
// The C++ compiler may hesitate to do these conversions of its own:
inline const cl_FF operator- (const cl_FF& x, const float y)
	{ return x - cl_FF(y); }
inline const cl_FF operator- (const float x, const cl_FF& y)
	{ return cl_FF(x) - y; }

// Liefert zu zwei Single-Float x und y : (* x y), ein FF.
extern const cl_FF operator* (const cl_FF& x, const cl_FF& y);
// The C++ compiler may hesitate to do these conversions of its own:
inline const cl_FF operator* (const cl_FF& x, const float y)
	{ return x * cl_FF(y); }
inline const cl_FF operator* (const float x, const cl_FF& y)
	{ return cl_FF(x) * y; }

// Liefert zu einem Single-Float x : (* x x), ein FF.
inline const cl_FF square (const cl_FF& x) { return x*x; }

// Liefert zu zwei Single-Float x und y : (/ x y), ein FF.
extern const cl_FF operator/ (const cl_FF& x, const cl_FF& y);
// The C++ compiler may hesitate to do these conversions of its own:
inline const cl_FF operator/ (const cl_FF& x, const float y)
	{ return x / cl_FF(y); }
inline const cl_FF operator/ (const float x, const cl_FF& y)
	{ return cl_FF(x) / y; }

// Liefert zu einem Single-Float x>=0 : (sqrt x), ein FF.
extern const cl_FF sqrt (const cl_FF& x);

// recip(x) liefert (/ x), wo x ein Single-Float ist.
extern const cl_FF recip (const cl_FF& x);

// abs(x) liefert (abs x), wo x ein Single-Float ist.
extern const cl_FF abs (const cl_FF& x);


// (1+ x), wo x ein Single-Float ist.
inline const cl_FF plus1 (const cl_FF& x)
{
	extern const cl_FF cl_I_to_FF (const cl_I&);
	return x + cl_I_to_FF(cl_I(1));
}

// (1- x), wo x ein Single-Float ist.
inline const cl_FF minus1 (const cl_FF& x)
{
	extern const cl_FF cl_I_to_FF (const cl_I&);
	return x + cl_I_to_FF(cl_I(-1));
}


// ffloor(x) liefert (ffloor x), wo x ein FF ist.
extern const cl_FF ffloor (const cl_FF& x);

// fceiling(x) liefert (fceiling x), wo x ein FF ist.
extern const cl_FF fceiling (const cl_FF& x);

// ftruncate(x) liefert (ftruncate x), wo x ein FF ist.
extern const cl_FF ftruncate (const cl_FF& x);

// fround(x) liefert (fround x), wo x ein FF ist.
extern const cl_FF fround (const cl_FF& x);


// Return type for frounding operators.
// x / y  --> (q,r) with x = y*q+r.
struct cl_FF_fdiv_t {
	cl_FF quotient;
	cl_FF remainder;
// Constructor.
	cl_FF_fdiv_t () {}
	cl_FF_fdiv_t (const cl_FF& q, const cl_FF& r) : quotient(q), remainder(r) {}
};

// ffloor2(x) liefert (ffloor x), wo x ein FF ist.
inline const cl_FF_fdiv_t ffloor2 (const cl_FF& x)
	{ cl_FF q = ffloor(x); return cl_FF_fdiv_t(q,x-q); }

// fceiling2(x) liefert (fceiling x), wo x ein FF ist.
inline const cl_FF_fdiv_t fceiling2 (const cl_FF& x)
	{ cl_FF q = fceiling(x); return cl_FF_fdiv_t(q,x-q); }

// ftruncate2(x) liefert (ftruncate x), wo x ein FF ist.
inline const cl_FF_fdiv_t ftruncate2 (const cl_FF& x)
	{ cl_FF q = ftruncate(x); return cl_FF_fdiv_t(q,x-q); }

// fround2(x) liefert (fround x), wo x ein FF ist.
inline const cl_FF_fdiv_t fround2 (const cl_FF& x)
	{ cl_FF q = fround(x); return cl_FF_fdiv_t(q,x-q); }


// Return type for rounding operators.
// x / y  --> (q,r) with x = y*q+r.
struct cl_FF_div_t {
	cl_I quotient;
	cl_FF remainder;
// Constructor.
	cl_FF_div_t () {}
	cl_FF_div_t (const cl_I& q, const cl_FF& r) : quotient(q), remainder(r) {}
};

// floor2(x) liefert (floor x), wo x ein FF ist.
inline const cl_FF_div_t floor2 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	cl_FF q = ffloor(x);
	return cl_FF_div_t(cl_FF_to_I(q),x-q);
}
inline const cl_I floor1 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	return cl_FF_to_I(ffloor(x));
}

// ceiling2(x) liefert (ceiling x), wo x ein FF ist.
inline const cl_FF_div_t ceiling2 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	cl_FF q = fceiling(x);
	return cl_FF_div_t(cl_FF_to_I(q),x-q);
}
inline const cl_I ceiling1 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	return cl_FF_to_I(fceiling(x));
}

// truncate2(x) liefert (truncate x), wo x ein FF ist.
inline const cl_FF_div_t truncate2 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	cl_FF q = ftruncate(x);
	return cl_FF_div_t(cl_FF_to_I(q),x-q);
}
inline const cl_I truncate1 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	return cl_FF_to_I(ftruncate(x));
}

// round2(x) liefert (round x), wo x ein FF ist.
inline const cl_FF_div_t round2 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	cl_FF q = fround(x);
	return cl_FF_div_t(cl_FF_to_I(q),x-q);
}
inline const cl_I round1 (const cl_FF& x)
{
	extern const cl_I cl_FF_to_I (const cl_FF& x);
	return cl_FF_to_I(fround(x));
}

// floor2(x,y) liefert (floor x y).
extern const cl_FF_div_t floor2 (const cl_FF& x, const cl_FF& y);
inline const cl_I floor1 (const cl_FF& x, const cl_FF& y) { return floor1(x/y); }

// ceiling2(x,y) liefert (ceiling x y).
extern const cl_FF_div_t ceiling2 (const cl_FF& x, const cl_FF& y);
inline const cl_I ceiling1 (const cl_FF& x, const cl_FF& y) { return ceiling1(x/y); }

// truncate2(x,y) liefert (truncate x y).
extern const cl_FF_div_t truncate2 (const cl_FF& x, const cl_FF& y);
inline const cl_I truncate1 (const cl_FF& x, const cl_FF& y) { return truncate1(x/y); }

// round2(x,y) liefert (round x y).
extern const cl_FF_div_t round2 (const cl_FF& x, const cl_FF& y);
inline const cl_I round1 (const cl_FF& x, const cl_FF& y) { return round1(x/y); }


// Return type for decode_float:
struct decoded_ffloat {
	cl_FF mantissa;
	cl_I exponent;
	cl_FF sign;
// Constructor.
	decoded_ffloat () {}
	decoded_ffloat (const cl_FF& m, const cl_I& e, const cl_FF& s) : mantissa(m), exponent(e), sign(s) {}
};

// decode_float(x) liefert zu einem Float x: (decode-float x).
// x = 0.0 liefert (0.0, 0, 1.0).
// x = (-1)^s * 2^e * m liefert ((-1)^0 * 2^0 * m, e als Integer, (-1)^s).
extern const decoded_ffloat decode_float (const cl_FF& x);

// float_exponent(x) liefert zu einem Float x:
// den Exponenten von (decode-float x).
// x = 0.0 liefert 0.
// x = (-1)^s * 2^e * m liefert e.
extern sintE float_exponent (const cl_FF& x);

// float_radix(x) liefert (float-radix x), wo x ein Float ist.
inline sintL float_radix (const cl_FF& x)
{
	(void)x; // unused x
	return 2;
}

// float_sign(x) liefert (float-sign x), wo x ein Float ist.
extern const cl_FF float_sign (const cl_FF& x);

// float_digits(x) liefert (float-digits x), wo x ein Float ist.
// < ergebnis: ein uintC >0
extern uintC float_digits (const cl_FF& x);

// float_precision(x) liefert (float-precision x), wo x ein Float ist.
// < ergebnis: ein uintC >=0
extern uintC float_precision (const cl_FF& x);


// integer_decode_float(x) liefert zu einem Float x: (integer-decode-float x).
// x = 0.0 liefert (0, 0, 1).
// x = (-1)^s * 2^e * m bei Float-Precision p liefert
//   (Mantisse 2^p * m als Integer, e-p als Integer, (-1)^s als Fixnum).
extern const cl_idecoded_float integer_decode_float (const cl_FF& x);


// scale_float(x,delta) liefert x*2^delta, wo x ein FF ist.
extern const cl_FF scale_float (const cl_FF& x, sintC delta);
extern const cl_FF scale_float (const cl_FF& x, const cl_I& delta);


// max(x,y) liefert (max x y), wo x und y Floats sind.
extern const cl_FF max (const cl_FF& x, const cl_FF& y);

// min(x,y) liefert (min x y), wo x und y Floats sind.
extern const cl_FF min (const cl_FF& x, const cl_FF& y);

// signum(x) liefert (signum x), wo x ein Float ist.
extern const cl_FF signum (const cl_FF& x);


// Konversion zu einem C "float".
extern float float_approx (const cl_FF& x);

// Konversion zu einem C "double".
extern double double_approx (const cl_FF& x);


// This could be optimized to use in-place operations.
inline cl_FF& operator+= (cl_FF& x, const cl_FF& y) { return x = x + y; }
inline cl_FF& operator+= (cl_FF& x, const float y) { return x = x + y; }
inline cl_FF& operator++ /* prefix */ (cl_FF& x) { return x = plus1(x); }
inline void operator++ /* postfix */ (cl_FF& x, int dummy) { (void)dummy; x = plus1(x); }
inline cl_FF& operator-= (cl_FF& x, const cl_FF& y) { return x = x - y; }
inline cl_FF& operator-= (cl_FF& x, const float y) { return x = x - y; }
inline cl_FF& operator-- /* prefix */ (cl_FF& x) { return x = minus1(x); }
inline void operator-- /* postfix */ (cl_FF& x, int dummy) { (void)dummy; x = minus1(x); }
inline cl_FF& operator*= (cl_FF& x, const cl_FF& y) { return x = x * y; }
inline cl_FF& operator*= (cl_FF& x, const float y) { return x = x * y; }
inline cl_FF& operator/= (cl_FF& x, const cl_FF& y) { return x = x / y; }
inline cl_FF& operator/= (cl_FF& x, const float y) { return x = x / y; }


/* */


// Runtime typing support.
extern cl_class cl_class_ffloat;
#ifdef CL_WIDE_POINTERS
CL_FORCE_LINK(cl_FF_classes_dummy, cl_class_ffloat)
#endif


// Debugging support.
#ifdef CL_DEBUG
extern int cl_FF_debug_module;
CL_FORCE_LINK(cl_FF_debug_dummy, cl_FF_debug_module)
#endif

}  // namespace cln

#endif /* _CL_FFLOAT_H */