This file is indexed.

/usr/include/chemps2/Cumulant.h is in libchemps2-dev 1.8.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
   Copyright (C) 2013-2016 Sebastian Wouters

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#ifndef CUMULANT_CHEMPS2_H
#define CUMULANT_CHEMPS2_H

#include "ThreeDM.h"
#include "TwoDM.h"

namespace CheMPS2{
/** Cumulant class.
    \author Sebastian Wouters <sebastianwouters@gmail.com>
    \date November 26, 2015
    
    The cumulant class contains routines to approximate the spinfree 4-RDM \f$ \Gamma^4 \f$ by neglecting the fourth order cumulant \f$ \Lambda^4 \f$. Based on the spinfree density matrices
    \f{eqnarray*}{
      \Gamma^1_{ip}        & = & \sum\limits_{\sigma}                   \braket{ 0 | \hat{a}_{i \sigma}^{\dagger} \hat{a}_{p \sigma} | 0 } \\
      \Gamma^2_{ijpq}      & = & \sum\limits_{\sigma \tau}              \braket{ 0 | \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \tau}^{\dagger} \hat{a}_{q \tau} \hat{a}_{p \sigma} | 0 } \\
      \Gamma^3_{ijkpqr}    & = & \sum\limits_{\sigma \tau \chi}         \braket{ 0 | \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \tau}^{\dagger} \hat{a}_{k \chi}^{\dagger} \hat{a}_{r \chi} \hat{a}_{q \tau} \hat{a}_{p \sigma} | 0 } \\
      \Gamma^4_{ijklpqrs}  & = & \sum\limits_{\sigma \tau \chi \omega } \braket{ 0 | \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \tau}^{\dagger} \hat{a}_{k \chi}^{\dagger} \hat{a}_{l \omega}^{\dagger} \hat{a}_{s \omega} \hat{a}_{r \chi} \hat{a}_{q \tau} \hat{a}_{p \sigma} | 0 }
    \f}
    and the spinfree second order cumulant 
    \f{eqnarray*}{
     \Lambda^2_{ijpq} & = & \Gamma^2_{ijpq} - \Gamma^1_{ip} \Gamma^1_{jq} + \frac{1}{2} \Gamma^1_{iq} \Gamma^1_{jp}
    \f}
    the spinfree 4-RDM can be written as [CUM1]:
    \f{eqnarray*}{
                     &   &  \Gamma^4_{ijklpqrs} \\
                     & = &  \Lambda^4_{ijklpqrs} \\
                     & + &  \Gamma^3_{ijkpqr} \Gamma^1_{ls}
                                 - \frac{1}{2} \Gamma^3_{ijksqr} \Gamma^1_{lp}
                                 - \frac{1}{2} \Gamma^3_{ijkpsr} \Gamma^1_{lq}
                                 - \frac{1}{2} \Gamma^3_{ijkpqs} \Gamma^1_{lr} \\
                     & + &  \Gamma^3_{ijlpqs} \Gamma^1_{kr}
                                 - \frac{1}{2} \Gamma^3_{ijlrqs} \Gamma^1_{kp}
                                 - \frac{1}{2} \Gamma^3_{ijlprs} \Gamma^1_{kq}
                                 - \frac{1}{2} \Gamma^3_{ijlpqr} \Gamma^1_{ks} \\
                     & + &  \Gamma^3_{iklprs} \Gamma^1_{jq}
                                 - \frac{1}{2} \Gamma^3_{iklqrs} \Gamma^1_{jp}
                                 - \frac{1}{2} \Gamma^3_{iklpqs} \Gamma^1_{jr}
                                 - \frac{1}{2} \Gamma^3_{iklprq} \Gamma^1_{js} \\
                     & + &  \Gamma^3_{jklqrs} \Gamma^1_{ip}
                                 - \frac{1}{2} \Gamma^3_{jklprs} \Gamma^1_{iq}
                                 - \frac{1}{2} \Gamma^3_{jklqps} \Gamma^1_{ir}
                                 - \frac{1}{2} \Gamma^3_{jklqrp} \Gamma^1_{is} \\
                     & - &             \Gamma^2_{ijpq} \Gamma^2_{klrs}
                                 + \frac{1}{2} \Gamma^2_{ijpr} \Gamma^2_{klqs}
                                 + \frac{1}{2} \Gamma^2_{ijps} \Gamma^2_{klrq}
                                 + \frac{1}{2} \Gamma^2_{ijrq} \Gamma^2_{klps}
                                 + \frac{1}{2} \Gamma^2_{ijsq} \Gamma^2_{klrp} \\
                     & - & \frac{1}{3} \Gamma^2_{ijrs} \Gamma^2_{klpq}
                                 - \frac{1}{6} \Gamma^2_{ijrs} \Gamma^2_{klqp}
                                 - \frac{1}{6} \Gamma^2_{ijsr} \Gamma^2_{klpq}
                                 - \frac{1}{3} \Gamma^2_{ijsr} \Gamma^2_{klqp} \\
                     & - &             \Gamma^2_{ikpr} \Gamma^2_{jlqs}
                                 + \frac{1}{2} \Gamma^2_{ikpq} \Gamma^2_{jlrs}
                                 + \frac{1}{2} \Gamma^2_{ikps} \Gamma^2_{jlqr}
                                 + \frac{1}{2} \Gamma^2_{ikqr} \Gamma^2_{jlps}
                                 + \frac{1}{2} \Gamma^2_{iksr} \Gamma^2_{jlqp} \\
                     & - & \frac{1}{3} \Gamma^2_{ikqs} \Gamma^2_{jlpr}
                                 - \frac{1}{6} \Gamma^2_{iksq} \Gamma^2_{jlpr}
                                 - \frac{1}{6} \Gamma^2_{ikqs} \Gamma^2_{jlrp}
                                 - \frac{1}{3} \Gamma^2_{iksq} \Gamma^2_{jlrp} \\
                     & - &             \Gamma^2_{ilps} \Gamma^2_{kjrq}
                                 + \frac{1}{2} \Gamma^2_{ilpr} \Gamma^2_{kjsq}
                                 + \frac{1}{2} \Gamma^2_{ilpq} \Gamma^2_{kjrs}
                                 + \frac{1}{2} \Gamma^2_{ilrs} \Gamma^2_{kjpq}
                                 + \frac{1}{2} \Gamma^2_{ilqs} \Gamma^2_{kjrp} \\
                     & - & \frac{1}{3} \Gamma^2_{ilrq} \Gamma^2_{kjps}
                                 - \frac{1}{6} \Gamma^2_{ilqr} \Gamma^2_{kjps}
                                 - \frac{1}{6} \Gamma^2_{ilrq} \Gamma^2_{kjsp}
                                 - \frac{1}{3} \Gamma^2_{ilqr} \Gamma^2_{kjsp} \\
                     & + & 2           \Lambda^2_{ijpq} \Lambda^2_{klrs}
                                 -             \Lambda^2_{ijpr} \Lambda^2_{klqs}
                                 -             \Lambda^2_{ijps} \Lambda^2_{klrq}
                                 -             \Lambda^2_{ijrq} \Lambda^2_{klps}
                                 -             \Lambda^2_{ijsq} \Lambda^2_{klrp} \\
                     & + & \frac{2}{3} \Lambda^2_{ijrs} \Lambda^2_{klpq}
                                 + \frac{1}{3} \Lambda^2_{ijrs} \Lambda^2_{klqp}
                                 + \frac{1}{3} \Lambda^2_{ijsr} \Lambda^2_{klpq}
                                 + \frac{2}{3} \Lambda^2_{ijsr} \Lambda^2_{klqp} \\
                     & + & 2           \Lambda^2_{ikpr} \Lambda^2_{jlqs}
                                 -             \Lambda^2_{ikpq} \Lambda^2_{jlrs}
                                 -             \Lambda^2_{ikps} \Lambda^2_{jlqr}
                                 -             \Lambda^2_{ikqr} \Lambda^2_{jlps}
                                 -             \Lambda^2_{iksr} \Lambda^2_{jlqp} \\
                     & + & \frac{2}{3} \Lambda^2_{ikqs} \Lambda^2_{jlpr}
                                 + \frac{1}{3} \Lambda^2_{iksq} \Lambda^2_{jlpr}
                                 + \frac{1}{3} \Lambda^2_{ikqs} \Lambda^2_{jlrp}
                                 + \frac{2}{3} \Lambda^2_{iksq} \Lambda^2_{jlrp} \\
                     & + & 2           \Lambda^2_{ilps} \Lambda^2_{kjrq}
                                 -             \Lambda^2_{ilpr} \Lambda^2_{kjsq}
                                 -             \Lambda^2_{ilpq} \Lambda^2_{kjrs}
                                 -             \Lambda^2_{ilrs} \Lambda^2_{kjpq}
                                 -             \Lambda^2_{ilqs} \Lambda^2_{kjrp} \\
                     & + & \frac{2}{3} \Lambda^2_{ilrq} \Lambda^2_{kjps}
                                 + \frac{1}{3} \Lambda^2_{ilqr} \Lambda^2_{kjps}
                                 + \frac{1}{3} \Lambda^2_{ilrq} \Lambda^2_{kjsp}
                                 + \frac{2}{3} \Lambda^2_{ilqr} \Lambda^2_{kjsp}
    \f}
    By neglecting \f$ \Lambda^4 \f$, the cumulant approximation of the 4-RDM \f$ \Gamma^4 \f$ is obtained. \n
    \n
    [CUM1] M. Saitow, Y. Kurashige and T. Yanai, Journal of Chemical Physics 139, 044118 (2013). http://dx.doi.org/10.1063/1.4816627 \n*/
   class Cumulant{

      public:

         //! Get the cumulant approximation of \f$ \Gamma^4_{ijklpqrs} \f$, using HAM indices
         /** \param prob Pointer to the DMRG problem
             \param the3DM Pointer to the DMRG 3-RDM
             \param the2DM Pointer to the DMRG 2-RDM
             \param i index 1 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param j index 2 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param k index 3 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param l index 4 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param p index 5 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param q index 6 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param r index 7 of \f$ \Gamma^4_{ijklpqrs} \f$
             \param s index 8 of \f$ \Gamma^4_{ijklpqrs} \f$
             \return the desired value */
         static double gamma4_ham(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, const int i, const int j, const int k, const int l, const int p, const int q, const int r, const int s);
         
         //! Contract the CASPT2 Fock operator with the cumulant approximation of \f$ \Gamma^4 \f$ in \f$ \mathcal{O}(L^7) \f$ time, using HAM indices
         /** \param prob Pointer to the DMRG problem
             \param the3DM Pointer to the DMRG 3-RDM
             \param the2DM Pointer to the DMRG 2-RDM
             \param fock Contains the SYMMETRIC fock operator \f$ F_{ls} \f$ = fock[l+L*s] = fock[s+L*l]
             \param result Contains the contraction: result[i+L*(j+L*(k+L*(p+L*(q+L*r))))] = \f$ \sum\limits_{ls} F_{ls} \Gamma^4_{ijklpqrs} \f$ */
         static void gamma4_fock_contract_ham(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, double * fock, double * result);
         
      private:
      
         // Get the second order cumulant \f$ \Lambda^2_{ijpq} \f$, using HAM indices
         static double lambda2_ham(const TwoDM * the2DM, const int i, const int j, const int p, const int q);
         
   };
}

#endif