/usr/include/CGAL/regularize_planes.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 | // Copyright (c) 2015 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Florent Lafarge, Simon Giraudot
//
/**
* \ingroup PkgPointSetShapeDetection3
* \file CGAL/regularize_planes.h
*
*/
#ifndef CGAL_REGULARIZE_PLANES_H
#define CGAL_REGULARIZE_PLANES_H
#include <CGAL/Shape_detection_3.h>
#include <CGAL/centroid.h>
#include <boost/foreach.hpp>
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace internal {
namespace PlaneRegularization {
template <typename Traits>
struct Plane_cluster
{
bool is_free;
std::vector<std::size_t> planes;
std::vector<std::size_t> coplanar_group;
std::vector<std::size_t> orthogonal_clusters;
typename Traits::Vector_3 normal;
typename Traits::FT cosangle_symmetry;
typename Traits::FT area;
typename Traits::FT cosangle_centroid;
};
template <typename Traits>
typename Traits::Vector_3 regularize_normal
(const typename Traits::Vector_3& n,
const typename Traits::Vector_3& symmetry_direction,
typename Traits::FT cos_symmetry)
{
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Line_3 Line;
typedef typename Traits::Plane_3 Plane;
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
Plane plane_symmetry (pt_symmetry, symmetry_direction);
Point pt_normal = CGAL::ORIGIN + n;
if (n != symmetry_direction || n != -symmetry_direction)
{
Plane plane_cut (CGAL::ORIGIN, pt_normal, CGAL::ORIGIN + symmetry_direction);
Line line;
CGAL::Object ob_1 = CGAL::intersection(plane_cut, plane_symmetry);
if (!assign(line, ob_1))
return n;
FT delta = std::sqrt ((FT)1. - cos_symmetry * cos_symmetry);
Point projected_origin = line.projection (CGAL::ORIGIN);
Vector line_vector (line);
line_vector = line_vector / std::sqrt (line_vector * line_vector);
Point pt1 = projected_origin + delta * line_vector;
Point pt2 = projected_origin - delta * line_vector;
if (CGAL::squared_distance (pt_normal, pt1) <= CGAL::squared_distance (pt_normal, pt2))
return Vector (CGAL::ORIGIN, pt1);
else
return Vector (CGAL::ORIGIN, pt2);
}
else
return n;
}
template <typename Traits>
typename Traits::Vector_3 regularize_normals_from_prior
(const typename Traits::Vector_3& np,
const typename Traits::Vector_3& n,
const typename Traits::Vector_3& symmetry_direction,
typename Traits::FT cos_symmetry)
{
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Line_3 Line;
typedef typename Traits::Plane_3 Plane;
Plane plane_orthogonality (CGAL::ORIGIN, np);
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
Plane plane_symmetry (pt_symmetry, symmetry_direction);
Line line;
CGAL::Object ob_1 = CGAL::intersection (plane_orthogonality, plane_symmetry);
if (!assign(line, ob_1))
return regularize_normal<Traits> (n, symmetry_direction, cos_symmetry);
Point projected_origin = line.projection (CGAL::ORIGIN);
FT R = CGAL::squared_distance (Point (CGAL::ORIGIN), projected_origin);
if (R <= 1) // 2 (or 1) possible points intersecting the unit sphere and line
{
FT delta = std::sqrt ((FT)1. - R);
Vector line_vector(line);
line_vector = line_vector / std::sqrt (line_vector * line_vector);
Point pt1 = projected_origin + delta * line_vector;
Point pt2 = projected_origin - delta * line_vector;
Point pt_n = CGAL::ORIGIN + n;
if (CGAL::squared_distance (pt_n, pt1) <= CGAL::squared_distance (pt_n, pt2))
return Vector (CGAL::ORIGIN, pt1);
else
return Vector (CGAL::ORIGIN, pt2);
}
else //no point intersecting the unit sphere and line
return regularize_normal<Traits> (n,symmetry_direction, cos_symmetry);
}
template <typename Traits,
typename RandomAccessIterator,
typename PlaneContainer,
typename PointPMap,
typename CentroidContainer,
typename AreaContainer>
void compute_centroids_and_areas (RandomAccessIterator input_begin,
PlaneContainer& planes,
PointPMap point_pmap,
CentroidContainer& centroids,
AreaContainer& areas)
{
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
for (std::size_t i = 0; i < planes.size (); ++ i)
{
std::vector < Point > listp;
for (std::size_t j = 0; j < planes[i]->indices_of_assigned_points ().size (); ++ j)
{
std::size_t yy = planes[i]->indices_of_assigned_points()[j];
Point pt = get (point_pmap, *(input_begin + yy));
listp.push_back(pt);
}
centroids.push_back (CGAL::centroid (listp.begin (), listp.end ()));
areas.push_back ((FT)(planes[i]->indices_of_assigned_points().size()) / (FT)100.);
}
}
template <typename Traits,
typename PlaneContainer,
typename PlaneClusterContainer,
typename AreaContainer>
void compute_parallel_clusters (PlaneContainer& planes,
PlaneClusterContainer& clusters,
AreaContainer& areas,
typename Traits::FT tolerance_cosangle,
const typename Traits::Vector_3& symmetry_direction)
{
typedef typename Traits::FT FT;
typedef typename Traits::Vector_3 Vector;
typedef typename PlaneClusterContainer::value_type Plane_cluster;
// find pairs of epsilon-parallel primitives and store them in parallel_planes
std::vector<std::vector<std::size_t> > parallel_planes (planes.size ());
for (std::size_t i = 0; i < planes.size (); ++ i)
{
Vector v1 = planes[i]->plane_normal ();
for (std::size_t j = 0; j < planes.size(); ++ j)
{
if (i == j)
continue;
Vector v2 = planes[j]->plane_normal ();
if (std::fabs (v1 * v2) > 1. - tolerance_cosangle)
parallel_planes[i].push_back (j);
}
}
std::vector<bool> is_available (planes.size (), true);
for (std::size_t i = 0; i < planes.size(); ++ i)
{
if(is_available[i])
{
is_available[i] = false;
clusters.push_back (Plane_cluster());
Plane_cluster& clu = clusters.back ();
//initialization containers
clu.planes.push_back (i);
std::vector<std::size_t> index_container_former_ring_parallel;
index_container_former_ring_parallel.push_back(i);
std::list<std::size_t> index_container_current_ring_parallel;
//propagation over the pairs of epsilon-parallel primitives
bool propagation=true;
clu.normal = planes[i]->plane_normal ();
clu.area = areas[i];
do
{
propagation = false;
for (std::size_t k = 0; k < index_container_former_ring_parallel.size(); ++ k)
{
std::size_t plane_index = index_container_former_ring_parallel[k];
for (std::size_t l = 0; l < parallel_planes[plane_index].size(); ++ l)
{
std::size_t it = parallel_planes[plane_index][l];
Vector normal_it = planes[it]->plane_normal ();
if(is_available[it]
&& std::fabs (normal_it*clu.normal) > 1. - tolerance_cosangle )
{
propagation = true;
index_container_current_ring_parallel.push_back(it);
is_available[it]=false;
if(clu.normal * normal_it <0)
normal_it = -normal_it;
clu.normal = (FT)clu.area * clu.normal
+ (FT)areas[it] * normal_it;
FT norm = (FT)1. / std::sqrt (clu.normal.squared_length());
clu.normal = norm * clu.normal;
clu.area += areas[it];
}
}
}
//update containers
index_container_former_ring_parallel.clear();
for (std::list<std::size_t>::iterator it = index_container_current_ring_parallel.begin();
it != index_container_current_ring_parallel.end(); ++it)
{
index_container_former_ring_parallel.push_back(*it);
clu.planes.push_back(*it);
}
index_container_current_ring_parallel.clear();
}
while(propagation);
if (symmetry_direction != CGAL::NULL_VECTOR)
{
clu.cosangle_symmetry = symmetry_direction * clu.normal;
if (clu.cosangle_symmetry < 0.)
{
clu.normal = -clu.normal;
clu.cosangle_symmetry = -clu.cosangle_symmetry;
}
}
}
}
is_available.clear();
}
template <typename Traits,
typename PlaneClusterContainer>
void cluster_symmetric_cosangles (PlaneClusterContainer& clusters,
typename Traits::FT tolerance_cosangle,
typename Traits::FT tolerance_cosangle_ortho)
{
typedef typename Traits::FT FT;
std::vector < FT > cosangle_centroids;
std::vector < std::size_t> list_cluster_index;
for( std::size_t i = 0; i < clusters.size(); ++ i)
list_cluster_index.push_back(static_cast<std::size_t>(-1));
std::size_t mean_index = 0;
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
if(list_cluster_index[i] == static_cast<std::size_t>(-1))
{
list_cluster_index[i] = mean_index;
FT mean = clusters[i].area * clusters[i].cosangle_symmetry;
FT mean_area = clusters[i].area;
for (std::size_t j = i+1; j < clusters.size(); ++ j)
{
if (list_cluster_index[j] == static_cast<std::size_t>(-1)
&& std::fabs (clusters[j].cosangle_symmetry -
mean / mean_area) < tolerance_cosangle_ortho)
{
list_cluster_index[j] = mean_index;
mean_area += clusters[j].area;
mean += clusters[j].area * clusters[j].cosangle_symmetry;
}
}
++ mean_index;
mean /= mean_area;
cosangle_centroids.push_back (mean);
}
}
for (std::size_t i = 0; i < cosangle_centroids.size(); ++ i)
{
if (cosangle_centroids[i] < tolerance_cosangle_ortho)
cosangle_centroids[i] = 0;
else if (cosangle_centroids[i] > 1. - tolerance_cosangle)
cosangle_centroids[i] = 1;
}
for (std::size_t i = 0; i < clusters.size(); ++ i)
clusters[i].cosangle_symmetry = cosangle_centroids[list_cluster_index[i]];
}
template <typename Traits,
typename PlaneClusterContainer>
void subgraph_mutually_orthogonal_clusters (PlaneClusterContainer& clusters,
const typename Traits::Vector_3& symmetry_direction)
{
typedef typename Traits::FT FT;
typedef typename Traits::Vector_3 Vector;
std::vector < std::vector < std::size_t> > subgraph_clusters;
std::vector < std::size_t> subgraph_clusters_max_area_index;
for (std::size_t i = 0; i < clusters.size(); ++ i)
clusters[i].is_free = true;
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
if(clusters[i].is_free)
{
clusters[i].is_free = false;
FT max_area = clusters[i].area;
std::size_t index_max_area = i;
//initialization containers
std::vector < std::size_t > index_container;
index_container.push_back(i);
std::vector < std::size_t > index_container_former_ring;
index_container_former_ring.push_back(i);
std::list < std::size_t > index_container_current_ring;
//propagation
bool propagation=true;
do
{
propagation=false;
//neighbors
for (std::size_t k=0;k<index_container_former_ring.size();k++)
{
std::size_t cluster_index=index_container_former_ring[k];
for (std::size_t j = 0; j < clusters[cluster_index].orthogonal_clusters.size(); ++ j)
{
std::size_t cluster_index_2 = clusters[cluster_index].orthogonal_clusters[j];
if(clusters[cluster_index_2].is_free)
{
propagation = true;
index_container_current_ring.push_back(cluster_index_2);
clusters[cluster_index_2].is_free = false;
if(max_area < clusters[cluster_index_2].area)
{
max_area = clusters[cluster_index_2].area;
index_max_area = cluster_index_2;
}
}
}
}
//update containers
index_container_former_ring.clear();
for(std::list < std::size_t>::iterator it = index_container_current_ring.begin();
it != index_container_current_ring.end(); ++it)
{
index_container_former_ring.push_back(*it);
index_container.push_back(*it);
}
index_container_current_ring.clear();
}
while(propagation);
subgraph_clusters.push_back(index_container);
subgraph_clusters_max_area_index.push_back(index_max_area);
}
}
//create subgraphs of mutually orthogonal clusters in which the
//largest cluster is excluded and store in
//subgraph_clusters_prop
std::vector < std::vector < std::size_t> > subgraph_clusters_prop;
for (std::size_t i=0;i<subgraph_clusters.size(); i++)
{
std::size_t index=subgraph_clusters_max_area_index[i];
std::vector < std::size_t> subgraph_clusters_prop_temp;
for (std::size_t j=0;j<subgraph_clusters[i].size(); j++)
if(subgraph_clusters[i][j]!=index)
subgraph_clusters_prop_temp.push_back(subgraph_clusters[i][j]);
subgraph_clusters_prop.push_back(subgraph_clusters_prop_temp);
}
//regularization of cluster normals : in eachsubgraph, we start
//from the largest area cluster and we propage over the subgraph
//by regularizing the normals of the clusters accorting to
//orthogonality and cosangle to symmetry direction
for (std::size_t i = 0; i < clusters.size(); ++ i)
clusters[i].is_free = true;
for (std::size_t i = 0; i < subgraph_clusters_prop.size(); ++ i)
{
std::size_t index_current=subgraph_clusters_max_area_index[i];
Vector vec_current=regularize_normal<Traits>
(clusters[index_current].normal,
symmetry_direction,
clusters[index_current].cosangle_symmetry);
clusters[index_current].normal = vec_current;
clusters[index_current].is_free = false;
//initialization containers
std::vector < std::size_t> index_container;
index_container.push_back(index_current);
std::vector < std::size_t> index_container_former_ring;
index_container_former_ring.push_back(index_current);
std::list < std::size_t> index_container_current_ring;
//propagation
bool propagation=true;
do
{
propagation=false;
//neighbors
for (std::size_t k=0;k<index_container_former_ring.size();k++)
{
std::size_t cluster_index=index_container_former_ring[k];
for (std::size_t j = 0; j < clusters[cluster_index].orthogonal_clusters.size(); ++ j)
{
std::size_t cluster_index_2 = clusters[cluster_index].orthogonal_clusters[j];
if(clusters[cluster_index_2].is_free)
{
propagation = true;
index_container_current_ring.push_back(cluster_index_2);
clusters[cluster_index_2].is_free = false;
Vector new_vect=regularize_normals_from_prior<Traits>
(clusters[cluster_index].normal,
clusters[cluster_index_2].normal,
symmetry_direction,
clusters[cluster_index_2].cosangle_symmetry);
clusters[cluster_index_2].normal = new_vect;
}
}
}
//update containers
index_container_former_ring.clear();
for(std::list < std::size_t>::iterator it = index_container_current_ring.begin();
it != index_container_current_ring.end(); ++it)
{
index_container_former_ring.push_back(*it);
index_container.push_back(*it);
}
index_container_current_ring.clear();
}while(propagation);
}
}
} // namespace PlaneRegularization
} // namespace internal
/// \endcond
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/// \ingroup PkgPointSetShapeDetection3
/*!
Given a set of detected planes with their respective inlier sets,
this function enables to regularize the planes:
- Planes near parallel can be made exactly parallel.
- Planes near orthogonal can be made exactly orthogonal.
- Planes parallel and near coplanar can be made exactly coplanar.
- Planes near symmetrical with a user-defined axis can be made
exactly symmetrical.
Planes are directly modified. Points are left unaltered, as well as
their relationships to planes (no transfer of point from a primitive
plane to another).
The implementation follows \cgalCite{cgal:vla-lod-15}.
\tparam Traits a model of `EfficientRANSACTraits`
\param shape_detection Shape detection object used to detect
shapes from the input data. While the shape detection algorithm
deals with several types of primitive shapes only planes can be
regularized.
\warning The `shape_detection` parameter must have already
detected shapes. If no plane exists in it, the regularization
function doesn't do anything.
\param regularize_parallelism Select whether parallelism is
regularized or not.
\param regularize_orthogonality Select whether orthogonality is
regularized or not.
\param regularize_coplanarity Select whether coplanarity is
regularized or not.
\param regularize_axis_symmetry Select whether axis symmetry is
regularized or not.
\param tolerance_angle Tolerance of deviation between normal
vectors of planes (in degrees) used for parallelism, orthogonality
and axis symmetry. Default value is 25 degrees.
\param tolerance_coplanarity Maximal distance between two parallel
planes such that they are considered coplanar. Default value is
0.01.
\param symmetry_direction Chosen axis for symmetry
regularization. Default value is the Z axis.
*/
template <typename EfficientRANSACTraits>
void regularize_planes (const Shape_detection_3::Efficient_RANSAC<EfficientRANSACTraits>& shape_detection,
bool regularize_parallelism,
bool regularize_orthogonality,
bool regularize_coplanarity,
bool regularize_axis_symmetry,
typename EfficientRANSACTraits::FT tolerance_angle
= (typename EfficientRANSACTraits::FT)25.0,
typename EfficientRANSACTraits::FT tolerance_coplanarity
= (typename EfficientRANSACTraits::FT)0.01,
typename EfficientRANSACTraits::Vector_3 symmetry_direction
= typename EfficientRANSACTraits::Vector_3
((typename EfficientRANSACTraits::FT)0.,
(typename EfficientRANSACTraits::FT)0.,
(typename EfficientRANSACTraits::FT)1.))
{
typedef typename EfficientRANSACTraits::FT FT;
typedef typename EfficientRANSACTraits::Point_3 Point;
typedef typename EfficientRANSACTraits::Vector_3 Vector;
typedef typename EfficientRANSACTraits::Plane_3 Plane;
typedef Shape_detection_3::Shape_base<EfficientRANSACTraits> Shape;
typedef Shape_detection_3::Plane<EfficientRANSACTraits> Plane_shape;
typedef typename internal::PlaneRegularization::Plane_cluster<EfficientRANSACTraits>
Plane_cluster;
typename EfficientRANSACTraits::Input_range::iterator input_begin = shape_detection.input_iterator_first();
std::vector<boost::shared_ptr<Plane_shape> > planes;
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes())
{
boost::shared_ptr<Plane_shape> pshape
= boost::dynamic_pointer_cast<Plane_shape>(shape);
// Ignore all shapes other than plane
if (pshape == boost::shared_ptr<Plane_shape>())
continue;
planes.push_back (pshape);
}
/*
* Compute centroids and areas
*/
std::vector<Point> centroids;
std::vector<FT> areas;
internal::PlaneRegularization::compute_centroids_and_areas<EfficientRANSACTraits>
(input_begin, planes, shape_detection.point_map(), centroids, areas);
tolerance_angle = tolerance_angle * (FT)CGAL_PI / (FT)(180);
FT tolerance_cosangle = (FT)1. - std::cos (tolerance_angle);
FT tolerance_cosangle_ortho = std::cos ((FT)0.5 * (FT)CGAL_PI - tolerance_angle);
// clustering the parallel primitives and store them in clusters
// & compute the normal, size and cos angle to the symmetry
// direction of each cluster
std::vector<Plane_cluster> clusters;
internal::PlaneRegularization::compute_parallel_clusters<EfficientRANSACTraits>
(planes, clusters, areas,
(regularize_parallelism ? tolerance_cosangle : (FT)0.0),
(regularize_axis_symmetry ? symmetry_direction : CGAL::NULL_VECTOR));
if (regularize_orthogonality)
{
//discovery orthogonal relationship between clusters
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
for (std::size_t j = i + 1; j < clusters.size(); ++ j)
{
if (std::fabs (clusters[i].normal * clusters[j].normal) < tolerance_cosangle_ortho)
{
clusters[i].orthogonal_clusters.push_back (j);
clusters[j].orthogonal_clusters.push_back (i);
}
}
}
}
if (regularize_axis_symmetry)
{
//clustering the symmetry cosangle and store their centroids in
//cosangle_centroids and the centroid index of each cluster in
//list_cluster_index
internal::PlaneRegularization::cluster_symmetric_cosangles<EfficientRANSACTraits>
(clusters, tolerance_cosangle, tolerance_cosangle_ortho);
}
//find subgraphs of mutually orthogonal clusters (store index of
//clusters in subgraph_clusters), and select the cluster of
//largest area
if (regularize_orthogonality || regularize_axis_symmetry)
internal::PlaneRegularization::subgraph_mutually_orthogonal_clusters<EfficientRANSACTraits>
(clusters, (regularize_axis_symmetry ? symmetry_direction : CGAL::NULL_VECTOR));
//recompute optimal plane for each primitive after normal regularization
for (std::size_t i=0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
Point pt_reg = planes[index_prim]->projection (centroids[index_prim]);
if( planes[index_prim]->plane_normal () * vec_reg < 0)
vec_reg=-vec_reg;
Plane plane_reg(pt_reg,vec_reg);
if( std::fabs(planes[index_prim]->plane_normal () * vec_reg) > 1. - tolerance_cosangle)
planes[index_prim]->update (plane_reg);
}
}
if (regularize_coplanarity)
{
//detecting co-planarity and store in list_coplanar_prim
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t ip = 0; ip < clusters[i].planes.size(); ++ ip)
clusters[i].coplanar_group.push_back (static_cast<std::size_t>(-1));
std::size_t cop_index=0;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
if (clusters[i].coplanar_group[j] == static_cast<std::size_t>(-1))
{
clusters[i].coplanar_group[j] = cop_index;
Point pt_reg = planes[index_prim]->projection(centroids[index_prim]);
Plane plan_reg(pt_reg,vec_reg);
for (std::size_t k = j + 1; k < clusters[i].planes.size(); ++ k)
{
if (clusters[i].coplanar_group[k] == static_cast<std::size_t>(-1))
{
std::size_t index_prim_next = clusters[i].planes[k];
Point pt_reg_next = planes[index_prim_next]->projection(centroids[index_prim_next]);
Point pt_proj=plan_reg.projection(pt_reg_next);
FT distance = std::sqrt (CGAL::squared_distance(pt_reg_next,pt_proj));
if (distance < tolerance_coplanarity)
clusters[i].coplanar_group[k] = cop_index;
}
}
cop_index++;
}
}
//regularize primitive position by computing barycenter of cplanar planes
std::vector<Point> pt_bary (cop_index, Point ((FT)0., (FT)0., (FT)0.));
std::vector<FT> area (cop_index, 0.);
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
std::size_t group = clusters[i].coplanar_group[j];
Point pt_reg = planes[index_prim]->projection(centroids[index_prim]);
pt_bary[group] = CGAL::barycenter (pt_bary[group], area[group], pt_reg, areas[index_prim]);
area[group] += areas[index_prim];
}
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
std::size_t group = clusters[i].coplanar_group[j];
Plane plane_reg (pt_bary[group], vec_reg);
if (planes[index_prim]->plane_normal ()
* plane_reg.orthogonal_vector() < 0)
planes[index_prim]->update (plane_reg.opposite());
else
planes[index_prim]->update (plane_reg);
}
}
}
}
} // namespace CGAL
#endif // CGAL_REGULARIZE_PLANES_H
|