/usr/include/CGAL/number_utils.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | // Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_NUMBER_UTILS_H
#define CGAL_NUMBER_UTILS_H
#include <CGAL/number_type_config.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>
namespace CGAL {
CGAL_NTS_BEGIN_NAMESPACE
// AST-Functor adapting functions UNARY
template< class AS >
inline
void
simplify( AS& x ) {
typename Algebraic_structure_traits< AS >::Simplify simplify;
simplify( x );
}
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Unit_part::result_type
unit_part( const AS& x ) {
typename Algebraic_structure_traits< AS >::Unit_part unit_part;
return unit_part( x );
}
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Is_square::result_type
is_square( const AS& x,
typename Algebraic_structure_traits< AS >::Is_square::second_argument_type y )
{
typename Algebraic_structure_traits< AS >::Is_square is_square;
return is_square( x, y );
}
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Is_square::result_type
is_square( const AS& x){
typename Algebraic_structure_traits< AS >::Is_square is_square;
return is_square( x );
}
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Square::result_type
square( const AS& x ) {
typename Algebraic_structure_traits< AS >::Square square;
return square( x );
}
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Inverse::result_type
inverse( const AS& x ) {
typename Algebraic_structure_traits< AS >::Inverse inverse;
return inverse( x );
}
template< class AS >
inline
typename Algebraic_structure_traits<AS>::Is_one::result_type
is_one( const AS& x ) {
typename Algebraic_structure_traits< AS >::Is_one is_one;
return is_one( x );
}
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Sqrt::result_type
sqrt( const AS& x ) {
typename Algebraic_structure_traits< AS >::Sqrt sqrt;
return sqrt( x );
}
// AST-Functor adapting functions BINARY
template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type>
::Integral_division::result_type
integral_division( const A& x, const B& y ) {
typedef typename Coercion_traits<A,B>::Type Type;
typename Algebraic_structure_traits< Type >::Integral_division
integral_division;
return integral_division( x, y );
}
template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type>
::Divides::result_type
divides( const A& x, const B& y ) {
typedef typename Coercion_traits<A,B>::Type Type;
typename Algebraic_structure_traits< Type >::Divides divides;
return divides( x, y );
}
template< class Type >
inline
typename Algebraic_structure_traits<Type>::Divides::result_type
divides( const Type& x, const Type& y, Type& q ) {
typename Algebraic_structure_traits< Type >::Divides divides;
return divides( x, y, q);
}
template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type >
::Gcd::result_type
gcd( const A& x, const B& y ) {
typedef typename Coercion_traits<A,B>::Type Type;
typename Algebraic_structure_traits< Type >::Gcd gcd;
return gcd( x, y );
}
template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type >
::Mod::result_type
mod( const A& x, const B& y ) {
typedef typename Coercion_traits<A,B>::Type Type;
typename Algebraic_structure_traits<Type >::Mod mod;
return mod( x, y );
}
template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type>::Div::result_type
div( const A& x, const B& y ) {
typedef typename Coercion_traits<A,B>::Type Type;
typename Algebraic_structure_traits<Type >::Div div;
return div( x, y );
}
template< class A, class B >
inline
void
div_mod(
const A& x,
const B& y,
typename Coercion_traits<A,B>::Type& q,
typename Coercion_traits<A,B>::Type& r ) {
typedef typename Coercion_traits<A,B>::Type Type;
typename Algebraic_structure_traits< Type >::Div_mod div_mod;
div_mod( x, y, q, r );
}
// others
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Kth_root::result_type
kth_root( int k, const AS& x ) {
typename Algebraic_structure_traits< AS >::Kth_root
kth_root;
return kth_root( k, x );
}
template< class Input_iterator >
inline
typename Algebraic_structure_traits< typename std::iterator_traits<Input_iterator>::value_type >
::Root_of::result_type
root_of( int k, Input_iterator begin, Input_iterator end ) {
typedef typename std::iterator_traits<Input_iterator>::value_type AS;
return typename Algebraic_structure_traits<AS>::Root_of()( k, begin, end );
}
// AST- and RET-functor adapting function
template< class Number_type >
inline
// select a Is_zero functor
typename boost::mpl::if_c<
::boost::is_same< typename Algebraic_structure_traits< Number_type >::Is_zero,
Null_functor >::value ,
typename Real_embeddable_traits< Number_type >::Is_zero,
typename Algebraic_structure_traits< Number_type >::Is_zero
>::type::result_type
is_zero( const Number_type& x ) {
// We take the Algebraic_structure_traits<>::Is_zero functor by default. If it
// is not available, we take the Real_embeddable_traits functor
typename ::boost::mpl::if_c<
::boost::is_same<
typename Algebraic_structure_traits< Number_type >::Is_zero,
Null_functor >::value ,
typename Real_embeddable_traits< Number_type >::Is_zero,
typename Algebraic_structure_traits< Number_type >::Is_zero >::type
is_zero;
return is_zero( x );
}
template <class A, class B>
inline
typename Real_embeddable_traits< typename Coercion_traits<A,B>::Type >
::Compare::result_type
compare(const A& a, const B& b)
{
typedef typename Coercion_traits<A,B>::Type Type;
typename Real_embeddable_traits<Type>::Compare compare;
return compare (a,b);
// return (a < b) ? SMALLER : (b < a) ? LARGER : EQUAL;
}
// RET-Functor adapting functions
template< class Real_embeddable >
inline
//Real_embeddable
typename Real_embeddable_traits< Real_embeddable >::Abs::result_type
abs( const Real_embeddable& x ) {
typename Real_embeddable_traits< Real_embeddable >::Abs abs;
return abs( x );
}
template< class Real_embeddable >
inline
//::Sign
typename Real_embeddable_traits< Real_embeddable >::Sgn::result_type
sign( const Real_embeddable& x ) {
typename Real_embeddable_traits< Real_embeddable >::Sgn sgn;
return sgn( x );
}
template< class Real_embeddable >
inline
//bool
typename Real_embeddable_traits< Real_embeddable >::Is_finite::result_type
is_finite( const Real_embeddable& x ) {
return typename Real_embeddable_traits< Real_embeddable >::Is_finite()( x );
}
template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::Is_positive::result_type
is_positive( const Real_embeddable& x ) {
typename Real_embeddable_traits< Real_embeddable >::Is_positive
is_positive;
return is_positive( x );
}
template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::Is_negative::result_type
is_negative( const Real_embeddable& x ) {
typename Real_embeddable_traits< Real_embeddable >::Is_negative
is_negative;
return is_negative( x );
}
/*
template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::Compare::result_type
//Comparison_result
compare( const Real_embeddable& x, const Real_embeddable& y ) {
typename Real_embeddable_traits< Real_embeddable >::Compare compare;
return compare( x, y );
}
*/
template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::To_double::result_type
//double
to_double( const Real_embeddable& x ) {
typename Real_embeddable_traits< Real_embeddable >::To_double to_double;
return to_double( x );
}
template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::To_interval::result_type
//std::pair< double, double >
to_interval( const Real_embeddable& x) {
typename Real_embeddable_traits< Real_embeddable >::To_interval
to_interval;
return to_interval( x );
}
template <typename NT>
NT approximate_sqrt(const NT& nt, CGAL::Field_tag)
{
return NT(sqrt(CGAL::to_double(nt)));
}
template <typename NT>
NT approximate_sqrt(const NT& nt, CGAL::Field_with_sqrt_tag)
{
return sqrt(nt);
}
template <typename NT>
NT approximate_sqrt(const NT& nt)
{
typedef CGAL::Algebraic_structure_traits<NT> AST;
typedef typename AST::Algebraic_category Algebraic_category;
return approximate_sqrt(nt, Algebraic_category());
}
CGAL_NTS_END_NAMESPACE
} //namespace CGAL
#endif // CGAL_NUMBER_UTILS_H
|