This file is indexed.

/usr/include/CGAL/number_utils.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Copyright (c) 1999  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Stefan Schirra

#ifndef CGAL_NUMBER_UTILS_H
#define CGAL_NUMBER_UTILS_H

#include <CGAL/number_type_config.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>

namespace CGAL {
CGAL_NTS_BEGIN_NAMESPACE


// AST-Functor adapting functions UNARY 
template< class AS >
inline 
void
simplify( AS& x ) {
    typename Algebraic_structure_traits< AS >::Simplify simplify;
    simplify( x );
}

template< class AS >
inline
typename Algebraic_structure_traits< AS >::Unit_part::result_type
unit_part( const AS& x ) {
    typename Algebraic_structure_traits< AS >::Unit_part unit_part;
    return unit_part( x );
}


template< class AS >
inline
typename Algebraic_structure_traits< AS >::Is_square::result_type
is_square( const AS& x, 
           typename Algebraic_structure_traits< AS >::Is_square::second_argument_type y ) 
{
    typename Algebraic_structure_traits< AS >::Is_square is_square;
    return is_square( x, y );
}

template< class AS >
inline
typename Algebraic_structure_traits< AS >::Is_square::result_type
is_square( const AS& x){
    typename Algebraic_structure_traits< AS >::Is_square is_square;
    return is_square( x );
}


template< class AS >
inline
typename Algebraic_structure_traits< AS >::Square::result_type
square( const AS& x ) {
    typename Algebraic_structure_traits< AS >::Square square;
    return square( x );
}


template< class AS >
inline
typename Algebraic_structure_traits< AS >::Inverse::result_type
inverse( const AS& x ) {
    typename Algebraic_structure_traits< AS >::Inverse inverse;
    return inverse( x );
}

template< class AS >
inline 
typename Algebraic_structure_traits<AS>::Is_one::result_type
is_one( const AS& x ) {
    typename Algebraic_structure_traits< AS >::Is_one is_one;
    return is_one( x );
}

template< class AS >
inline
typename Algebraic_structure_traits< AS >::Sqrt::result_type
sqrt( const AS& x ) {
    typename Algebraic_structure_traits< AS >::Sqrt sqrt;
    return sqrt( x );
}

// AST-Functor adapting functions BINARY

template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type>
::Integral_division::result_type
integral_division( const A& x, const B& y ) {
    typedef typename Coercion_traits<A,B>::Type Type;
    typename Algebraic_structure_traits< Type >::Integral_division 
        integral_division;
    return integral_division( x, y );
}

template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type> 
::Divides::result_type
divides( const A& x, const B& y ) {
  typedef typename Coercion_traits<A,B>::Type Type;
  typename Algebraic_structure_traits< Type >::Divides  divides;
  return divides( x, y );
}

template< class Type >
inline
typename Algebraic_structure_traits<Type>::Divides::result_type
divides( const Type& x, const Type& y, Type& q ) {
  typename Algebraic_structure_traits< Type >::Divides  divides;
  return divides( x, y, q);
}

template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type >
::Gcd::result_type
gcd( const A& x, const B& y ) {
    typedef typename Coercion_traits<A,B>::Type      Type;
    typename Algebraic_structure_traits< Type >::Gcd gcd;
    return gcd( x, y );
}


template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type >
::Mod::result_type
mod( const A& x, const B& y ) {
    typedef typename Coercion_traits<A,B>::Type Type;
    typename Algebraic_structure_traits<Type >::Mod mod;
    return mod( x, y );
}

template< class A, class B >
inline
typename Algebraic_structure_traits< typename Coercion_traits<A,B>::Type>::Div::result_type
div( const A& x, const B& y ) {
    typedef typename Coercion_traits<A,B>::Type Type;
    typename Algebraic_structure_traits<Type >::Div div;
    return div( x, y );
}

template< class A, class B >
inline 
void
div_mod( 
        const A& x,
        const B& y,
        typename Coercion_traits<A,B>::Type& q, 
        typename Coercion_traits<A,B>::Type& r ) {
    typedef typename Coercion_traits<A,B>::Type Type;
    typename Algebraic_structure_traits< Type >::Div_mod div_mod;
    div_mod( x, y, q, r );
}

// others 
template< class AS >
inline
typename Algebraic_structure_traits< AS >::Kth_root::result_type
kth_root( int k, const AS& x ) {
    typename Algebraic_structure_traits< AS >::Kth_root
        kth_root;
    return kth_root( k, x );                                                                    
}


template< class Input_iterator >
inline
typename Algebraic_structure_traits< typename std::iterator_traits<Input_iterator>::value_type >
::Root_of::result_type
root_of( int k, Input_iterator begin, Input_iterator end ) {
    typedef typename std::iterator_traits<Input_iterator>::value_type AS; 
    return typename Algebraic_structure_traits<AS>::Root_of()( k, begin, end );
}

// AST- and RET-functor adapting function
template< class Number_type >
inline 
// select a Is_zero functor
typename boost::mpl::if_c< 
 ::boost::is_same< typename Algebraic_structure_traits< Number_type >::Is_zero,
 Null_functor  >::value ,
  typename Real_embeddable_traits< Number_type >::Is_zero,
  typename Algebraic_structure_traits< Number_type >::Is_zero
>::type::result_type
is_zero( const Number_type& x ) {
    // We take the Algebraic_structure_traits<>::Is_zero functor by default. If it
    //  is not available, we take the Real_embeddable_traits functor
    typename ::boost::mpl::if_c< 
        ::boost::is_same<
             typename Algebraic_structure_traits< Number_type >::Is_zero,
             Null_functor >::value ,
       typename Real_embeddable_traits< Number_type >::Is_zero,
       typename Algebraic_structure_traits< Number_type >::Is_zero >::type
       is_zero;
return is_zero( x );                                                                    
}


template <class A, class B>
inline
typename Real_embeddable_traits< typename Coercion_traits<A,B>::Type >
::Compare::result_type 
compare(const A& a, const B& b)
{ 
    typedef typename Coercion_traits<A,B>::Type Type;
    typename Real_embeddable_traits<Type>::Compare compare;
    return compare (a,b);
    // return (a < b) ? SMALLER : (b < a) ? LARGER : EQUAL; 
}


// RET-Functor adapting functions
template< class Real_embeddable >
inline 
//Real_embeddable 
typename Real_embeddable_traits< Real_embeddable >::Abs::result_type 
abs( const Real_embeddable& x ) {
    typename Real_embeddable_traits< Real_embeddable >::Abs abs;
    return abs( x );
}

template< class Real_embeddable >
inline 
//::Sign 
typename Real_embeddable_traits< Real_embeddable >::Sgn::result_type
sign( const Real_embeddable& x ) {
    typename Real_embeddable_traits< Real_embeddable >::Sgn sgn;
    return sgn( x );
}

template< class Real_embeddable >
inline 
//bool
typename Real_embeddable_traits< Real_embeddable >::Is_finite::result_type
is_finite( const Real_embeddable& x ) {
    return typename Real_embeddable_traits< Real_embeddable >::Is_finite()( x );
}

template< class Real_embeddable >
inline 
typename Real_embeddable_traits< Real_embeddable >::Is_positive::result_type
is_positive( const Real_embeddable& x ) {
    typename Real_embeddable_traits< Real_embeddable >::Is_positive 
        is_positive;
    return is_positive( x );
}

template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::Is_negative::result_type
is_negative( const Real_embeddable& x ) {
    typename Real_embeddable_traits< Real_embeddable >::Is_negative
        is_negative;
    return is_negative( x );
}

/*
template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::Compare::result_type
//Comparison_result
compare( const Real_embeddable& x, const Real_embeddable& y ) {
    typename Real_embeddable_traits< Real_embeddable >::Compare compare;
    return compare( x, y );
}
*/

template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::To_double::result_type
//double
to_double( const Real_embeddable& x ) {
    typename Real_embeddable_traits< Real_embeddable >::To_double to_double;  
    return to_double( x );
}

template< class Real_embeddable >
inline
typename Real_embeddable_traits< Real_embeddable >::To_interval::result_type
//std::pair< double, double >
to_interval( const Real_embeddable& x) {
    typename Real_embeddable_traits< Real_embeddable >::To_interval 
        to_interval;
    return to_interval( x );
}

template <typename NT>
NT approximate_sqrt(const NT& nt, CGAL::Field_tag)
{
  return NT(sqrt(CGAL::to_double(nt)));
}

template <typename NT>
NT approximate_sqrt(const NT& nt, CGAL::Field_with_sqrt_tag)
{
  return sqrt(nt);
}

template <typename NT>
NT approximate_sqrt(const NT& nt)
{
  typedef CGAL::Algebraic_structure_traits<NT> AST;
  typedef typename AST::Algebraic_category Algebraic_category;
  return approximate_sqrt(nt, Algebraic_category());
}

CGAL_NTS_END_NAMESPACE
} //namespace CGAL

#endif // CGAL_NUMBER_UTILS_H