/usr/include/CGAL/leda_integer.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | // Copyright (c) 1999,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri, Michael Hemmer
#ifndef CGAL_LEDA_INTEGER_H
#define CGAL_LEDA_INTEGER_H
#include <CGAL/number_type_basic.h>
#include <utility>
#include <CGAL/leda_coercion_traits.h>
#include <CGAL/Interval_nt.h>
#include <CGAL/LEDA_basic.h>
#include <LEDA/numbers/integer.h>
#include <LEDA/numbers/bigfloat.h>// for To_interval
#include <CGAL/Residue.h>
#include <CGAL/Modular_traits.h>
namespace CGAL {
template <> class Algebraic_structure_traits< leda_integer >
: public Algebraic_structure_traits_base< leda_integer,
Euclidean_ring_tag > {
public:
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
typedef INTERN_AST::Is_square_per_sqrt< Type >
Is_square;
class Gcd
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y ) const {
// By definition gcd(0,0) == 0
if( x == Type(0) && y == Type(0) )
return Type(0);
return CGAL_LEDA_SCOPE::gcd( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
// Unfortunately the behaviour of leda has changed here several times
// The following Div_mod is invariant under these changes
// However, the Div and Mod defined below might be more efficient
// TODO: recover Div Mod implementation for all leda versions
class Div_mod {
public:
typedef Type first_argument_type;
typedef Type second_argument_type;
typedef Type& third_argument_type;
typedef Type& fourth_argument_type;
typedef void result_type;
void operator()(const Type& x, const Type& y, Type& q, Type& r) const {
q = x / y;
r = x - q*y;
CGAL_postcondition(x == y*q + r);
if (r == 0) return;
// round q towards zero
if ( r.sign() != x.sign() ){
q -= x.sign();
r -= x.sign()*y;
}
CGAL_postcondition(x == y*q + r);
CGAL_postcondition(r.sign() == x.sign());
}
};
// Div defined via base using Div_mod
// Mod defined via base using Div_mod
// This code results in an inconsisten div/mod for some leda versions
// TODO: reactivate this code
// typedef INTERN_AST::Div_per_operator< Type > Div;
// class Mod
// : public std::binary_function< Type, Type,
// Type > {
// public:
// Type operator()( const Type& x, const Type& y ) const {
// Type m = x % y;
// return m;
// }
// CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
// };
class Sqrt
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CGAL_LEDA_SCOPE::sqrt( x );
}
};
};
template <> class Real_embeddable_traits< leda_integer >
: public INTERN_RET::Real_embeddable_traits_base< leda_integer , CGAL::Tag_true > {
public:
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CGAL_LEDA_SCOPE::abs( x );
}
};
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
}
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
return x.to_double();
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
leda::bigfloat h(x);
double abs_err = 0;
double low =h.to_double(abs_err, leda::TO_N_INF);
double high =h.to_double(abs_err, leda::TO_P_INF);
return std::make_pair(low,high);
}
};
};
template<>
class Modular_traits< ::leda::integer > {
typedef Residue MOD;
public:
typedef ::leda::integer NT;
typedef ::CGAL::Tag_true Is_modularizable;
typedef MOD Residue_type;
struct Modular_image{
Residue_type operator()(const NT& a){
return Residue_type ((a%NT(MOD::get_current_prime())).to_long());
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
//
// Needs_parens_as_product
//
template <>
struct Needs_parens_as_product<leda_integer> {
bool operator()(const leda_integer& x) {
return CGAL_NTS is_negative(x);
}
};
// missing mixed operators
inline
bool
operator==(int a, const leda_integer& b)
{ return b == a; }
inline
bool
operator!=(int a, const leda_integer& b)
{ return b != a; }
template <>
struct Split_double<leda_integer>
{
void operator()(double d, leda_integer &num, leda_integer &den) const
{
std::pair<double, double> p = split_numerator_denominator(d);
num = leda_integer(p.first);
den = leda_integer(p.second);
}
};
// Benchmark_rep specialization
template<>
class Benchmark_rep< leda_integer > {
const leda_integer& t;
public:
//! initialize with a const reference to \a t.
Benchmark_rep( const leda_integer& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
out << t;
return out;
}
static std::string get_benchmark_name() {
return "Integer";
}
};
} //namespace CGAL
// Unary + is missing for leda::integer
namespace leda {
inline integer operator+( const integer& i) { return i; }
} // namespace leda
//since types are included by LEDA_coercion_traits.h:
#include <CGAL/leda_rational.h>
#include <CGAL/leda_bigfloat.h>
#include <CGAL/leda_real.h>
#include <CGAL/LEDA_arithmetic_kernel.h>
#endif // CGAL_LEDA_INTEGER_H
|