This file is indexed.

/usr/include/CGAL/leda_bigfloat.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Copyright (c) 1999,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Stefan Schirra, Michael Hemmer

#ifndef CGAL_LEDA_BIGFLOAT_H
#define CGAL_LEDA_BIGFLOAT_H

#include <CGAL/basic.h>

#include <utility>
#include <CGAL/leda_coercion_traits.h>
#include <CGAL/Interval_nt.h>

#include <CGAL/LEDA_basic.h>
#include <LEDA/numbers/bigfloat.h>

namespace CGAL {

template <> class Algebraic_structure_traits< leda_bigfloat >
  : public Algebraic_structure_traits_base< leda_bigfloat,
                                            Field_with_kth_root_tag >  {
  public:
    typedef Tag_false           Is_exact;
    typedef Tag_true            Is_numerical_sensitive;

    class Sqrt
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
          return CGAL_LEDA_SCOPE::sqrt( x );
        }
    };

    class Kth_root
      : public std::binary_function<int, Type, Type> {
      public:
        Type operator()( int k,
                                        const Type& x) const {
            CGAL_precondition_msg(k > 0, "'k' must be positive for k-th roots");
            // heuristic: we ask for as many precision as the argument has
            long d = x.get_significant_length();
            if ( d < 53) // O.K. we want at least double precision
                d = 53;
            return CGAL_LEDA_SCOPE::sqrt_d( x, d, k);
        }
    };

};

template <> class Real_embeddable_traits< leda_bigfloat >
  : public INTERN_RET::Real_embeddable_traits_base< leda_bigfloat , CGAL::Tag_true > {
public:
  
    class Abs
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
            return CGAL_LEDA_SCOPE::abs( x );
        }
    };

    class Sgn
      : public std::unary_function< Type, ::CGAL::Sign > {
      public:
        ::CGAL::Sign operator()( const Type& x ) const {
          return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
        }
    };

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& x,
                                            const Type& y ) const {
          return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
        }
        
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type, 
                Comparison_result )
    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& x ) const {
          return x.to_double();
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {

          // assuming leda_bigfloat guarantee 1 bit error max
          Protect_FPU_rounding<true> P (CGAL_FE_TONEAREST);
          Interval_nt_advanced approx (CGAL_LEDA_SCOPE::to_double(x));
          FPU_set_cw(CGAL_FE_UPWARD);
          approx += Interval_nt<false>::smallest();
          return approx.pair();
        }
    };

    class Is_finite
      : public std::unary_function< Type, bool > {
      public:
        bool operator()( const Type& x )  const {
          return !( CGAL_LEDA_SCOPE::isInf(x) || CGAL_LEDA_SCOPE::isNaN(x) );
        }
    };
};

template<>
class Is_valid< leda_bigfloat >
  : public std::unary_function< leda_bigfloat, bool > {
  public :
    bool operator()( const leda_bigfloat& x ) const {
      return !( CGAL_LEDA_SCOPE::isNaN(x) );
    }
};


} //namespace CGAL

// Unary + is missing for leda::bigfloat
namespace leda {
    inline bigfloat operator+( const bigfloat& i) { return i; }
} // namespace leda

//since types are included by LEDA_coercion_traits.h:
#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#include <CGAL/leda_real.h>
#include <CGAL/LEDA_arithmetic_kernel.h>

#endif // CGAL_LEDA_BIGFLOAT_H