/usr/include/CGAL/interpolation_functions.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | // Copyright (c) 2003 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Julia Floetotto
#ifndef CGAL_INTERPOLATION_FUNCTIONS_H
#define CGAL_INTERPOLATION_FUNCTIONS_H
#include <utility>
#include <CGAL/double.h>
#include <CGAL/use.h>
#include <vector>
namespace CGAL {
//Functor class for accessing the function values/gradients
template< class Map >
struct Data_access : public std::unary_function< typename Map::key_type,
std::pair< typename Map::mapped_type, bool> >
{
typedef typename Map::mapped_type Data_type;
typedef typename Map::key_type Key_type;
Data_access< Map >(const Map& m): map(m){};
std::pair< Data_type, bool>
operator()(const Key_type& p) const {
typename Map::const_iterator mit = map.find(p);
if(mit!= map.end())
return std::make_pair(mit->second, true);
return std::make_pair(Data_type(), false);
};
const Map& map;
};
//the interpolation functions:
template < class ForwardIterator, class Functor>
typename Functor::result_type::first_type
linear_interpolation(ForwardIterator first, ForwardIterator beyond,
const typename
std::iterator_traits<ForwardIterator>::value_type::
second_type& norm, Functor function_value)
{
CGAL_precondition(norm>0);
typedef typename Functor::result_type::first_type Value_type;
Value_type result(0);
typename Functor::result_type val;
for(; first !=beyond; ++first){
val = function_value(first->first);
CGAL_assertion(val.second);
result += (first->second/norm) * val.first;
}
return result;
}
template < class ForwardIterator, class Functor, class GradFunctor,
class Traits>
std::pair< typename Functor::result_type::first_type, bool>
quadratic_interpolation(ForwardIterator first, ForwardIterator beyond,
const typename
std::iterator_traits<ForwardIterator>::
value_type::second_type& norm, const typename
std::iterator_traits<ForwardIterator>::value_type::
first_type& p, Functor function_value,
GradFunctor function_gradient,
const Traits& traits)
{
CGAL_precondition(norm >0);
typedef typename Functor::result_type::first_type Value_type;
Value_type result(0);
typename Functor::result_type f;
typename GradFunctor::result_type grad;
for(; first !=beyond; ++first){
f = function_value(first->first);
grad = function_gradient(first->first);
//test if value and gradient are correctly retrieved:
CGAL_assertion(f.second);
if(!grad.second)
return std::make_pair(Value_type(0), false);
result += (first->second/norm)
*( f.first + grad.first*
traits.construct_scaled_vector_d_object()
(traits.construct_vector_d_object()(first->first, p),0.5));
}
return std::make_pair(result, true);
}
template < class ForwardIterator, class Functor, class GradFunctor,
class Traits>
std::pair< typename Functor::result_type::first_type, bool>
sibson_c1_interpolation(ForwardIterator first, ForwardIterator beyond,
const typename
std::iterator_traits<ForwardIterator>::
value_type::second_type&
norm, const typename
std::iterator_traits<ForwardIterator>::value_type::
first_type& p,
Functor function_value,
GradFunctor function_gradient,
const Traits& traits)
{
CGAL_precondition(norm >0);
typedef typename Functor::result_type::first_type Value_type;
typedef typename Traits::FT Coord_type;
Coord_type term1(0), term2(term1), term3(term1), term4(term1);
Value_type linear_int(0),gradient_int(0);
typename Functor::result_type f;
typename GradFunctor::result_type grad;
for(; first !=beyond; ++first){
f = function_value(first->first);
grad = function_gradient(first->first);
CGAL_assertion(f.second);
if(!grad.second)
//the values are not correct:
return std::make_pair(Value_type(0), false);
Coord_type coeff = first->second/norm;
Coord_type squared_dist = traits.
compute_squared_distance_d_object()(first->first, p);
Coord_type dist = CGAL_NTS sqrt(squared_dist);
if(squared_dist ==0){
ForwardIterator it = first;
CGAL_USE(it);
CGAL_assertion(++it==beyond);
return std::make_pair(f.first, true);
}
//three different terms to mix linear and gradient
//interpolation
term1 += coeff/dist;
term2 += coeff * squared_dist;
term3 += coeff * dist;
linear_int += coeff * f.first;
gradient_int += (coeff/dist)
* (f.first + grad.first *
traits.construct_vector_d_object()(first->first, p));
}
term4 = term3/ term1;
gradient_int = gradient_int / term1;
return std::make_pair((term4* linear_int + term2 * gradient_int)/
(term4 + term2), true);
}
//this method works with rational number types:
//modification of Sibson's interpolant without sqrt
//following a proposition by Gunther Rote:
//
// the general scheme:
// Coord_type inv_weight = f(dist); //i.e. dist^2
// term1 += coeff/inv_weight;
// term2 += coeff * squared_dist;
// term3 += coeff*(squared_dist/inv_weight);
// gradient_int += (coeff/inv_weight)*
// (vh->get_value()+ vh->get_gradient()
// *(p - vh->point()));
template < class ForwardIterator, class Functor, class GradFunctor,
class Traits>
std::pair< typename Functor::result_type::first_type, bool>
sibson_c1_interpolation_square(ForwardIterator first, ForwardIterator
beyond, const typename
std::iterator_traits<ForwardIterator>::
value_type::second_type& norm,
const typename
std::iterator_traits<ForwardIterator>::
value_type::first_type& p,
Functor function_value,
GradFunctor function_gradient,
const Traits& traits)
{
CGAL_precondition(norm >0);
typedef typename Functor::result_type::first_type Value_type;
typedef typename Traits::FT Coord_type;
Coord_type term1(0), term2(term1), term3(term1), term4(term1);
Value_type linear_int(0),gradient_int(0);
typename Functor::result_type f;
typename GradFunctor::result_type grad;
for(; first !=beyond; ++first){
f = function_value(first->first);
grad = function_gradient(first->first);
CGAL_assertion(f.second);
if(!grad.second)
//the gradient is not known
return std::make_pair(Value_type(0), false);
Coord_type coeff = first->second/norm;
Coord_type squared_dist = traits.
compute_squared_distance_d_object()(first->first, p);
if(squared_dist ==0){
ForwardIterator it = first;
CGAL_USE(it);
CGAL_assertion(++it==beyond);
return std::make_pair(f.first,true);
}
//three different terms to mix linear and gradient
//interpolation
term1 += coeff/squared_dist;
term2 += coeff * squared_dist;
term3 += coeff;
linear_int += coeff * f.first;
gradient_int += (coeff/squared_dist)
*(f.first + grad.first*
traits.construct_vector_d_object()(first->first, p));
}
term4 = term3/ term1;
gradient_int = gradient_int / term1;
return std::make_pair((term4* linear_int + term2 * gradient_int)/
(term4 + term2), true);
}
template < class RandomAccessIterator, class Functor, class
GradFunctor, class Traits>
std::pair< typename Functor::result_type::first_type, bool>
farin_c1_interpolation(RandomAccessIterator first,
RandomAccessIterator beyond,
const typename
std::iterator_traits<RandomAccessIterator>::
value_type::second_type& norm, const typename
std::iterator_traits<RandomAccessIterator>::
value_type::first_type& /*p*/,
Functor function_value, GradFunctor
function_gradient,
const Traits& traits)
{
CGAL_precondition(norm >0);
//the function value is available for all points
//if a gradient value is not availble: function returns false
typedef typename Functor::result_type::first_type Value_type;
typedef typename Traits::FT Coord_type;
typename Functor::result_type f;
typename GradFunctor::result_type grad;
int n= static_cast<int>(beyond - first);
if( n==1){
f= function_value(first->first);
CGAL_assertion(f.second);
return std::make_pair(f.first, true);
}
//there must be one or at least three NN-neighbors:
CGAL_assertion(n > 2);
RandomAccessIterator it2, it;
Value_type result(0);
const Coord_type fac3(3);
std::vector< std::vector<Value_type> >
ordinates(n,std::vector<Value_type>(n, Value_type(0)));
for(int i =0; i<n; ++i){
it = first+i;
Coord_type coord_i_square = CGAL_NTS square(it->second);
//for later: the function value of it->first:
f = function_value(it->first);
CGAL_assertion(f.second);
ordinates[i][i] = f.first;
//control point = data point
result += coord_i_square * it->second* ordinates[i][i];
//compute tangent plane control point (one 2, one 1 entry)
Value_type res_i(0);
for(int j =0; j<n; ++j){
if(i!=j){
it2 = first+j;
grad = function_gradient(it->first);
if(!grad.second)
//the gradient is not known
return std::make_pair(Value_type(0), false);
//ordinates[i][j] = (p_j - p_i) * g_i
ordinates[i][j] = grad.first *
traits.construct_vector_d_object()(it->first,it2->first);
// a point in the tangent plane:
// 3( f(p_i) + (1/3)(p_j - p_i) * g_i)
// => 3*f(p_i) + (p_j - p_i) * g_i
res_i += (fac3 * ordinates[i][i] + ordinates[i][j])* it2->second;
}
}
//res_i already multiplied by three
result += coord_i_square *res_i;
}
//the third type of control points: three 1 entries i,j,k
for(int i=0; i< n; ++i)
for(int j=i+1; j< n; ++j)
for(int k=j+1; k<n; ++k){
// add 6* (u_i*u_j*u_k) * b_ijk
// b_ijk = 1.5 * a - 0.5*c
//where
//c : average of the three data control points
//a : 1.5*a = 1/12 * (ord[i][j] + ord[i][k] + ord[j][i] +
// ord[j][k] + ord[k][i]+ ord[k][j])
// => 6 * b_ijk = 3*(f_i + f_j + f_k) + 0.5*a
result += (Coord_type(2.0)*( ordinates[i][i]+ ordinates[j][j]+
ordinates[k][k])
+ Coord_type(0.5)*(ordinates[i][j] + ordinates[i][k]
+ ordinates[j][i] +
ordinates[j][k] + ordinates[k][i]+
ordinates[k][j]))
*(first+i)->second *(first+j)->second *(first+k)->second ;
}
return std::make_pair(result/(CGAL_NTS square(norm)*norm), true);
}
} //namespace CGAL
#endif // CGAL_INTERPOLATION_FUNCTIONS_H
|