/usr/include/CGAL/int.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | // Copyright (c) 1999,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra, Michael Hemmer
#ifndef CGAL_INT_H
#define CGAL_INT_H
#include <CGAL/number_type_basic.h>
#include <CGAL/Modular_traits.h>
namespace CGAL {
namespace INTERN_INT {
template< class Type >
class Is_square_per_double_conversion
: public std::binary_function< Type, Type&,
bool > {
public:
bool operator()( const Type& x,
Type& y ) const {
y = (Type) std::sqrt( (double)x );
return x == y * y;
}
bool operator()( const Type& x ) const {
Type y =
(Type) std::sqrt( (double)x );
return x == y * y;
}
};
} // INTERN_INT
// int
template<> class Algebraic_structure_traits< int >
: public Algebraic_structure_traits_base< int, Euclidean_ring_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
typedef INTERN_AST::Div_per_operator< Type > Div;
typedef INTERN_AST::Mod_per_operator< Type > Mod;
typedef INTERN_INT::
Is_square_per_double_conversion< Type > Is_square;
};
template <> class Real_embeddable_traits< int >
: public INTERN_RET::Real_embeddable_traits_base< int , CGAL::Tag_true > {};
/*! \ingroup CGAL_Modular_traits_spec
\brief Specialization of CGAL::Modular_traits for \c int.
A model of concept ModularTraits, supports \c int.
*/
template <typename T>
class Modular_traits;
template<>
class Modular_traits<int>{
public:
typedef int NT;
typedef ::CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(int i){
return Residue_type(i);
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return x.get_value();
}
};
};
// long
template<> class Algebraic_structure_traits< long int >
: public Algebraic_structure_traits_base< long int,
Euclidean_ring_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
typedef INTERN_AST::Div_per_operator< Type > Div;
typedef INTERN_AST::Mod_per_operator< Type > Mod;
typedef INTERN_INT::
Is_square_per_double_conversion< Type > Is_square;
};
template <> class Real_embeddable_traits< long int >
: public INTERN_RET::Real_embeddable_traits_base< long int , CGAL::Tag_true > {
public:
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return Interval_nt<true>(x).pair();
}
};
};
/*! \ingroup CGAL_Modular_traits_spec
\brief Specialization of CGAL::Modular_traits for \c long.
A model of concept ModularTraits, supports \c long.
*/
template<>
class Modular_traits<long>{
public:
typedef long NT;
typedef ::CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(long i){
return Residue_type(i);
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
// short
template<> class Algebraic_structure_traits< short int >
: public Algebraic_structure_traits_base< short int,
Euclidean_ring_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
// Explicitly defined functors which have no support for implicit
// interoperability. This is nescessary because of the implicit conversion
// to int for binary operations between short ints.
class Integral_division
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
Algebraic_structure_traits<Type>::Div actual_div;
CGAL_precondition_msg( actual_div( x, y) * y == x,
"'x' must be divisible by 'y' in "
"Algebraic_structure_traits<...>::Integral_div()(x,y)" );
return actual_div( x, y);
}
};
class Gcd
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
Algebraic_structure_traits<Type>::Mod mod;
Algebraic_structure_traits<Type>::Unit_part unit_part;
Algebraic_structure_traits<Type>::Integral_division integral_div;
// First: the extreme cases and negative sign corrections.
if (x == Type(0)) {
if (y == Type(0))
return Type(0);
return integral_div( y, unit_part(y) );
}
if (y == Type(0))
return integral_div(x, unit_part(x) );
Type u = integral_div( x, unit_part(x) );
Type v = integral_div( y, unit_part(y) );
// Second: assuming mod is the most expensive op here, we don't compute it
// unnecessarily if u < v
if (u < v) {
v = mod(v,u);
// maintain invariant of v > 0 for the loop below
if ( v == Type(0) )
return u;
}
Type w;
do {
w = mod(u,v);
if ( w == Type(0))
return v;
u = mod(v,w);
if ( u == Type(0))
return w;
v = mod(w,u);
} while (v != Type(0));
return u;
}
};
class Div_mod {
public:
typedef Type first_argument_type;
typedef Type second_argument_type;
typedef Type& third_argument_type;
typedef Type& fourth_argument_type;
typedef void result_type;
void operator()( const Type& x,
const Type& y,
Type& q, Type& r) const {
q = Type(x / y);
r = Type(x % y);
CGAL_assertion(x == q * y + r);
return;
}
};
// based on \c Div_mod.
class Div
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
return Type(x / y);
};
};
// based on \c Div_mod.
class Mod
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
return Type(x % y);
};
};
typedef INTERN_INT::
Is_square_per_double_conversion< Type > Is_square;
};
template <> class Real_embeddable_traits< short int >
: public INTERN_RET::Real_embeddable_traits_base< short int , CGAL::Tag_true > {};
// unsigned int
template <> class Real_embeddable_traits< unsigned int >
: public INTERN_RET::Real_embeddable_traits_base< unsigned int , CGAL::Tag_true > {};
// unsigned long
template <> class Real_embeddable_traits< unsigned long >
: public INTERN_RET::Real_embeddable_traits_base< unsigned long , CGAL::Tag_true > {
public:
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return Interval_nt<true>(x).pair();
}
};
};
// Note : "long long" support is in <CGAL/long_long.h>
} //namespace CGAL
#endif // CGAL_INT_H
|