This file is indexed.

/usr/include/CGAL/int.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Copyright (c) 1999,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Stefan Schirra, Michael Hemmer


#ifndef CGAL_INT_H
#define CGAL_INT_H

#include <CGAL/number_type_basic.h>
#include <CGAL/Modular_traits.h>

namespace CGAL {

namespace INTERN_INT {
    template< class Type >
    class Is_square_per_double_conversion
      : public std::binary_function< Type, Type&,
                                bool > {
      public:
        bool operator()( const Type& x,
                         Type& y ) const {
          y = (Type) std::sqrt( (double)x );
          return x == y * y;
        }
        bool operator()( const Type& x ) const {
            Type y =
                (Type) std::sqrt( (double)x );
            return x == y * y;
        }

    };
} // INTERN_INT

// int
template<> class Algebraic_structure_traits< int >
  : public Algebraic_structure_traits_base< int, Euclidean_ring_tag > {

  public:
    typedef Tag_false            Is_exact;
    typedef Tag_true             Is_numerical_sensitive;

    typedef INTERN_AST::Div_per_operator< Type >  Div;
    typedef INTERN_AST::Mod_per_operator< Type >  Mod;

    typedef INTERN_INT::
       Is_square_per_double_conversion< Type > Is_square;
};

template <> class Real_embeddable_traits< int >
  : public INTERN_RET::Real_embeddable_traits_base< int , CGAL::Tag_true > {};

/*! \ingroup CGAL_Modular_traits_spec
  \brief Specialization of CGAL::Modular_traits for \c int.
  
  A model of concept ModularTraits, supports \c int. 
*/
  template <typename T>
  class Modular_traits;

template<>
class Modular_traits<int>{
public: 
    typedef int NT;
    typedef ::CGAL::Tag_true Is_modularizable;
    typedef Residue Residue_type;
 
    struct Modular_image{
        Residue_type operator()(int i){
            return Residue_type(i);
        }
    };    
    struct Modular_image_representative{
        NT operator()(const Residue_type& x){
            return x.get_value();
        }
    };    
};

// long

template<> class Algebraic_structure_traits< long int >
  : public Algebraic_structure_traits_base< long int,
                                            Euclidean_ring_tag > {

  public:
    typedef Tag_false            Is_exact;
    typedef Tag_true           Is_numerical_sensitive;

    typedef INTERN_AST::Div_per_operator< Type >  Div;
    typedef INTERN_AST::Mod_per_operator< Type >  Mod;

    typedef INTERN_INT::
       Is_square_per_double_conversion< Type > Is_square;
};

template <> class Real_embeddable_traits< long int >
  : public INTERN_RET::Real_embeddable_traits_base< long int , CGAL::Tag_true > {
public:

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {
          return Interval_nt<true>(x).pair();
        }
    };
};


/*! \ingroup CGAL_Modular_traits_spec
  \brief Specialization of CGAL::Modular_traits for \c long.
  
  A model of concept ModularTraits, supports \c long. 
*/
template<>
class Modular_traits<long>{
public: 
    typedef long NT;
    typedef ::CGAL::Tag_true Is_modularizable;
    typedef Residue Residue_type;
 
    struct Modular_image{
        Residue_type operator()(long i){
            return Residue_type(i);
        }
    };   
    struct Modular_image_representative{
        NT operator()(const Residue_type& x){
            return NT(x.get_value());
        }
    };    
};

// short

template<> class Algebraic_structure_traits< short int >
  : public Algebraic_structure_traits_base< short int,
                                            Euclidean_ring_tag > {

  public:
    typedef Tag_false            Is_exact;
    typedef Tag_true             Is_numerical_sensitive;

    // Explicitly defined functors which have no support for implicit
    //  interoperability. This is nescessary because of the implicit conversion
    //  to int for binary operations between short ints.
    class Integral_division
      : public std::binary_function< Type, Type,
                                Type > {
      public:
        Type operator()( const Type& x,
                                        const Type& y) const {
          Algebraic_structure_traits<Type>::Div actual_div;
          CGAL_precondition_msg( actual_div( x, y) * y == x,
                  "'x' must be divisible by 'y' in "
                  "Algebraic_structure_traits<...>::Integral_div()(x,y)" );
          return actual_div( x, y);
        }
    };

    class Gcd
      : public std::binary_function< Type, Type,
                                Type > {
      public:
        Type operator()( const Type& x,
                                        const Type& y) const {
          Algebraic_structure_traits<Type>::Mod mod;
          Algebraic_structure_traits<Type>::Unit_part unit_part;
          Algebraic_structure_traits<Type>::Integral_division integral_div;
          // First: the extreme cases and negative sign corrections.
          if (x == Type(0)) {
              if (y == Type(0))
                  return Type(0);
              return integral_div( y, unit_part(y) );
          }
          if (y == Type(0))
              return integral_div(x, unit_part(x) );
          Type u = integral_div( x, unit_part(x) );
          Type v = integral_div( y, unit_part(y) );
          // Second: assuming mod is the most expensive op here, we don't compute it
          // unnecessarily if u < v
          if (u < v) {
              v = mod(v,u);
              // maintain invariant of v > 0 for the loop below
              if ( v == Type(0) )
                  return u;
          }

          Type w;
          do {
              w = mod(u,v);
              if ( w == Type(0))
                  return v;
              u = mod(v,w);
              if ( u == Type(0))
                  return w;
              v = mod(w,u);
          } while (v != Type(0));
          return u;
        }
    };

    class Div_mod {
      public:
        typedef Type    first_argument_type;
        typedef Type    second_argument_type;
        typedef Type&   third_argument_type;
        typedef Type&   fourth_argument_type;
        typedef void  result_type;
        void operator()( const Type& x,
                         const Type& y,
                         Type& q, Type& r) const {
          q = Type(x / y);
          r = Type(x % y);
          CGAL_assertion(x == q * y + r);
          return;
        }
    };

    // based on \c Div_mod.
    class Div
      : public std::binary_function< Type, Type,
                                Type > {
      public:
        Type operator()( const Type& x,
                         const Type& y) const {
          return Type(x / y);
        };
    };

    // based on \c Div_mod.
    class Mod
      : public std::binary_function< Type, Type,
                                Type > {
      public:
        Type operator()( const Type& x,
                         const Type& y) const {
          return Type(x % y);
        };
    };

    typedef INTERN_INT::
       Is_square_per_double_conversion< Type > Is_square;
};

template <> class Real_embeddable_traits< short int >
  : public INTERN_RET::Real_embeddable_traits_base< short int , CGAL::Tag_true > {};

// unsigned int

template <> class Real_embeddable_traits< unsigned int >
   : public INTERN_RET::Real_embeddable_traits_base< unsigned int , CGAL::Tag_true > {};

// unsigned long

template <> class Real_embeddable_traits< unsigned long >
   : public INTERN_RET::Real_embeddable_traits_base< unsigned long , CGAL::Tag_true > {
public:

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {
          return Interval_nt<true>(x).pair();
        }
    };
};

// Note : "long long" support is in <CGAL/long_long.h>

} //namespace CGAL

#endif // CGAL_INT_H