/usr/include/CGAL/float.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | // Copyright (c) 1999,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Geert-Jan Giezeman, Michael Hemmer
#ifndef CGAL_FLOAT_H
#define CGAL_FLOAT_H
#include <CGAL/utils.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>
#include <cmath> // std::sqrt, std::pow
#ifdef CGAL_CFG_IEEE_754_BUG
# include <CGAL/IEEE_754_unions.h>
#endif
namespace CGAL {
#ifdef CGAL_CFG_IEEE_754_BUG
#define CGAL_EXPONENT_FLOAT_MASK 0x7f800000
#define CGAL_MANTISSA_FLOAT_MASK 0x007fffff
inline
bool
is_finite_by_mask_float(unsigned int u)
{
unsigned int e = u & CGAL_EXPONENT_FLOAT_MASK;
return ( (e ^ CGAL_EXPONENT_FLOAT_MASK) != 0);
}
inline
bool
is_nan_by_mask_float(unsigned int u)
{
if ( is_finite_by_mask_float(u) ) return false;
// unsigned int m = u & CGAL_MANTISSA_FLOAT_MASK;
return ( (u & CGAL_MANTISSA_FLOAT_MASK) != 0);
}
template<>
class Is_valid< float >
: public std::unary_function< float, bool > {
public :
bool operator()( const float& x ) const {
float f = x;
IEEE_754_float* p = reinterpret_cast<IEEE_754_float*>(&f);
return !is_nan_by_mask_float( p->c );
}
};
#else
template<>
class Is_valid< float >
: public std::unary_function< float, bool > {
public :
bool operator()( const float& x ) const {
return (x == x);
}
};
#endif
template <> class Algebraic_structure_traits< float >
: public Algebraic_structure_traits_base< float,
Field_with_kth_root_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
class Sqrt
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return std::sqrt( x );
}
};
class Kth_root
: public std::binary_function<int, Type, Type> {
public:
Type operator()( int k, const Type& x) const {
CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots");
return (Type) std::pow(double(x), 1.0 / double(k));
};
};
};
template <> class Real_embeddable_traits< float >
: public INTERN_RET::Real_embeddable_traits_base< float , CGAL::Tag_true> {
public:
// Is_finite depends on platform
class Is_finite
: public std::unary_function< Type, bool > {
public:
bool operator()( const Type& x ) const {
#ifdef CGAL_CFG_IEEE_754_BUG
Type f = x;
IEEE_754_float* p = reinterpret_cast<IEEE_754_float*>(&f);
return is_finite_by_mask_float( p->c );
#else
return (x == x) && (is_valid(x-x));
#endif
}
};
};
} //namespace CGAL
#endif // CGAL_FLOAT_H
|