This file is indexed.

/usr/include/CGAL/Quotient.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
// Copyright (c) 1999-2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Stefan Schirra, Sylvain Pion, Michael Hemmer

// The template class Quotient<NT> is based on the LEDA class
// leda_rational written by Stefan Naeher and Christian Uhrig.
// It is basically a templated version with restricted functionality
// of the version of rational in LEDA release 3.3.
// The modification was done by Stefan.Schirra@mpi-sb.mpg.de

// The include is done before the protect macro on purpose, because
// of a cyclic dependency.

#include <CGAL/number_type_basic.h>

#ifndef CGAL_QUOTIENT_H
#define CGAL_QUOTIENT_H

#include <utility>
#include <istream>

#include <CGAL/Interval_nt.h>
#include <CGAL/Kernel/mpl.h>

#include <boost/operators.hpp>

namespace CGAL {

#define CGAL_int(T)    typename First_if_different<int,    T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type

// Simplify the quotient numerator/denominator.
// Currently the default template doesn't do anything.
// This function is not documented as a number type requirement for now.
template < typename NT >
inline void
simplify_quotient(NT &, NT &) {}

// This one should be replaced by some functor or tag.
// Meanwhile, the class is specialized for Gmpz, mpz_class, leda_integer.
template < typename NT >
struct Split_double
{
  void operator()(double d, NT &num, NT &den) const
  {
    num = NT(d);
    den = 1;
  }
};


template <class NT_>
class Quotient
  : boost::ordered_field_operators1< Quotient<NT_>
  , boost::ordered_field_operators2< Quotient<NT_>, NT_
  , boost::ordered_field_operators2< Quotient<NT_>, CGAL_int(NT_)
  , boost::ordered_field_operators2< Quotient<NT_>, CGAL_double(NT_)
    > > > >
{
 public:
  typedef NT_        NT;

  Quotient()
    : num(0), den(1) {}

  Quotient(const NT& n)
    : num(n), den(1) {}

  Quotient(const CGAL_double(NT) & n)
  { Split_double<NT>()(n, num, den); }

  Quotient(const CGAL_int(NT) & n)
    : num(n), den(1) {}

  template <class T>
  explicit Quotient(const T& n) : num(n), den(1) {}

  template <class T>
  Quotient(const Quotient<T>& n) : num(n.numerator()), den(n.denominator()) {}

  Quotient& operator=(const NT & n)
  {
    num = n;
    den = 1;
    return *this;
  }

  Quotient& operator=(const CGAL_double(NT) & n)
  {
    Split_double<NT>()(n, num, den);
    return *this;
  }

  Quotient& operator=(const CGAL_int(NT) & n)
  {
    num = n;
    den = 1;
    return *this;
  }

#ifdef CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE

  template <class T1, class T2>
  Quotient(const T1& n, const T2& d) : num(n), den(d)
  { CGAL_precondition( d != 0 ); }

#else
  template <class T1, class T2>
  Quotient(T1 && n, T2 && d)
     : num(std::forward<T1>(n)), den(std::forward<T2>(d))
  { CGAL_postcondition( den != 0 ); }

  Quotient(NT && n)
    : num(std::move(n)), den(1) {}

  Quotient& operator=(NT && n)
  {
    num = std::move(n);
    den = 1;
    return *this;
  }
#endif

  Quotient<NT>& operator+= (const Quotient<NT>& r);
  Quotient<NT>& operator-= (const Quotient<NT>& r);
  Quotient<NT>& operator*= (const Quotient<NT>& r);
  Quotient<NT>& operator/= (const Quotient<NT>& r);
  Quotient<NT>& operator+= (const NT& r);
  Quotient<NT>& operator-= (const NT& r);
  Quotient<NT>& operator*= (const NT& r);
  Quotient<NT>& operator/= (const NT& r);
  Quotient<NT>& operator+= (const CGAL_int(NT)& r);
  Quotient<NT>& operator-= (const CGAL_int(NT)& r);
  Quotient<NT>& operator*= (const CGAL_int(NT)& r);
  Quotient<NT>& operator/= (const CGAL_int(NT)& r);
  Quotient<NT>& operator+= (const CGAL_double(NT)& r);
  Quotient<NT>& operator-= (const CGAL_double(NT)& r);
  Quotient<NT>& operator*= (const CGAL_double(NT)& r);
  Quotient<NT>& operator/= (const CGAL_double(NT)& r);

  Quotient<NT>&    normalize();

  const NT&   numerator()   const { return num; }
  const NT&   denominator() const { return den; }

  void swap(Quotient &q)
  {
    using std::swap;
    swap(num, q.num);
    swap(den, q.den);
  }

#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
  int tam() const { return std::max(num.tam(), den.tam()); }
#endif

 public:
  NT   num;
  NT   den;
};

template <class NT>
inline
void swap(Quotient<NT> &p, Quotient<NT> &q)
{
  p.swap(q);
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::normalize()
{
  if (num == den)
  {
      num = den = 1;
      return *this;
  }
  if (-num == den)
  {
      num = -1;
      den = 1;
      return *this;
  }
  NT ggt = CGAL_NTS gcd(num, den);
  if (ggt != 1 )
  {
      num = CGAL::integral_division(num, ggt);
      den = CGAL::integral_division(den, ggt);
  }
  return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const Quotient<NT>& r)
{
    num = num * r.den + r.num * den;
    den *= r.den;
    simplify_quotient(num, den);
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const Quotient<NT>& r)
{
    num = num * r.den - r.num * den;
    den *= r.den;
    simplify_quotient(num, den);
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const Quotient<NT>& r)
{
    num *= r.num;
    den *= r.den;
    simplify_quotient(num, den);
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const Quotient<NT>& r)
{
    CGAL_precondition( r.num != 0 );
    num *= r.den;
    den *= r.num;
    simplify_quotient(num, den);
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const NT& r)
{
    num += r * den;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const NT& r)
{
    num -= r * den;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const NT& r)
{
    num *= r;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const NT& r)
{
    CGAL_precondition( r != 0 );
    den *= r;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const CGAL_int(NT)& r)
{
    num += r * den;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const CGAL_int(NT)& r)
{
    num -= r * den;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const CGAL_int(NT)& r)
{
    num *= r;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const CGAL_int(NT)& r)
{
    CGAL_precondition( r != 0 );
    den *= r;
    return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const CGAL_double(NT)& r)
{
  //num += r * den; 
  NT r_num, r_den; 
  Split_double<NT>()(r,r_num,r_den);
  num = num*r_den + r_num*den;
  den *=r_den; 
  return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const CGAL_double(NT)& r)
{
  //num -= r * den;
  NT r_num, r_den; 
  Split_double<NT>()(r,r_num,r_den);
  num =  num*r_den - r_num*den;
  den *= r_den; 
  return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const CGAL_double(NT)& r)
{
  // num *= r;
  
  NT r_num, r_den; 
  Split_double<NT>()(r,r_num,r_den);
  num *= r_num;
  den *= r_den; 
  return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const CGAL_double(NT)& r)
{
  CGAL_precondition( r != 0 );
  NT r_num, r_den; 
  Split_double<NT>()(r,r_num,r_den);
  num *= r_den;
  den *= r_num; 
  return *this;
}

template <class NT>
CGAL_MEDIUM_INLINE
Comparison_result
quotient_cmp(const Quotient<NT>& x, const Quotient<NT>& y)
{
    // No assumptions on the sign of  den  are made

    // code assumes that SMALLER == - 1;
    CGAL_precondition( SMALLER == static_cast<Comparison_result>(-1) );

    int xsign = CGAL_NTS sign(x.num) * CGAL_NTS sign(x.den) ;
    int ysign = CGAL_NTS sign(y.num) * CGAL_NTS sign(y.den) ;
    if (xsign == 0) return static_cast<Comparison_result>(-ysign);
    if (ysign == 0) return static_cast<Comparison_result>(xsign);
    // now (x != 0) && (y != 0)
    int diff = xsign - ysign;
    if (diff == 0)
    {
        int msign = CGAL_NTS sign(x.den) * CGAL_NTS sign(y.den);
        NT leftop  = x.num * y.den * msign;
        NT rightop = y.num * x.den * msign;
        return CGAL_NTS compare(leftop, rightop);
    }
    else
    {
        return (xsign < ysign) ? SMALLER : LARGER;
    }
}


template <class NT>
std::ostream&
operator<<(std::ostream& s, const Quotient<NT>& r)
{
   return s << r.numerator() << '/' << r.denominator();
}

template <class NT>
std::istream&
operator>>(std::istream& in, Quotient<NT>& r)
{
  /* format  num/den  or simply  num  */

  NT num,den=1;
  in >> num;
  if(!in) return in;
  std::istream::sentry s(in); // skip whitespace
  if(in.peek()!='/'){
	  if(!in.good()){
		  in.clear(std::ios_base::eofbit);
		  // unlikely to be some other reason?
	  }
  } else {
	  char c;
	  in.get(c); // remove the '/'
	  in >> den;
	  if(!in) return in;
  }
  r=Quotient<NT>(num,den);
  return in;
}

template< class NT >
inline
Quotient<NT>
operator+( const Quotient<NT>& x ) {
  return Quotient<NT>(x);
}

template <class NT>
inline
Quotient<NT>
operator-(const Quotient<NT>& x)
{ return Quotient<NT>(-x.num,x.den); }


template <class NT>
CGAL_MEDIUM_INLINE
NT
quotient_truncation(const Quotient<NT>& r)
{ return (r.num / r.den); }



template <class NT>
CGAL_MEDIUM_INLINE
bool
operator==(const Quotient<NT>& x, const Quotient<NT>& y)
{ return x.num * y.den == x.den * y.num; }

template <class NT>
CGAL_MEDIUM_INLINE
bool
operator==(const Quotient<NT>& x, const NT& y)
{ return x.den * y == x.num; }

template <class NT>
inline
bool
operator==(const Quotient<NT>& x, const CGAL_int(NT) & y)
{ return x.den * y == x.num; }

template <class NT>
inline
bool
operator==(const Quotient<NT>& x, const CGAL_double(NT) & y)
{ return x.den * y == x.num; }



template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const Quotient<NT>& y)
{
  return quotient_cmp(x,y) == SMALLER;
}

template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const NT& y)
{
  return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
}

template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const CGAL_int(NT)& y)
{
  return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
}

template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const CGAL_double(NT)& y)
{
  return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
}


template <class NT>
inline
bool
operator>(const Quotient<NT>& x, const NT& y)
{ return quotient_cmp(x,Quotient<NT>(y)) == LARGER; }

template <class NT>
inline
bool
operator>(const Quotient<NT>& x, const CGAL_int(NT)& y)
{ return quotient_cmp(x, Quotient<NT>(y)) == LARGER; }

template <class NT>
inline
bool
operator>(const Quotient<NT>& x, const CGAL_double(NT)& y)
{ return quotient_cmp(x, Quotient<NT>(y)) == LARGER; }


template< class NT >
class Is_valid< Quotient<NT> >
  : public std::unary_function< Quotient<NT>, bool > {
  public :
    bool operator()( const Quotient<NT>& x ) const {
      return is_valid(x.num) && is_valid(x.den);
    }
};


template <class NT>
inline
const NT&
denominator(const Quotient<NT>& q)
{ return q.den ; }

template <class NT>
inline
const NT&
numerator(const Quotient<NT>& q)
{ return q.num ; }

// The min/max are functions are needed since LEDA defines template
// min/max functions which clash with std::min/max with ADL.
template <class NT>
inline
const Quotient<NT>&
min
BOOST_PREVENT_MACRO_SUBSTITUTION
(const Quotient<NT>& p, const Quotient<NT>& q)
{
  return (std::min)(p, q);
}
template <class NT>
inline
const Quotient<NT>&
max
BOOST_PREVENT_MACRO_SUBSTITUTION
(const Quotient<NT>& p, const Quotient<NT>& q)
{
  return (std::max)(p, q);
}

/*
template <class NT>
NT
gcd(const NT&, const NT&)
{ return NT(1); }
*/

#undef CGAL_double
#undef CGAL_int

//
// Algebraic structure traits
//
namespace INTERN_QUOTIENT {
  template< class NT, class Sqrt_functor >
  class Sqrt_selector {
    public:
      class Sqrt
        : public std::unary_function< NT, NT > {
        public:
          NT operator()( const NT& x ) const {
            CGAL_precondition(x > 0);
            return NT(CGAL_NTS sqrt(x.numerator()*x.denominator()),
                      x.denominator());
          }
      };
  };

  template< class NT >
  class Sqrt_selector< NT, Null_functor > {
    public:
      typedef Null_functor Sqrt;
  };

// TODO: Algebraic_category could be Field_with_sqrt_tag, if NT
//       is INEXACT (because Sqrt can be inexact) and has a Sqrt-functor.
template<class NT> class Algebraic_structure_traits_quotient_base;

template< class NT > class Algebraic_structure_traits_quotient_base< Quotient<NT> >
  : public Algebraic_structure_traits_base< Quotient<NT>, Field_tag >  {

public:
    typedef Quotient<NT> Type;

    typedef typename Algebraic_structure_traits<NT>::Is_exact        Is_exact;
    typedef Tag_false Is_numerical_sensitive;



    class Is_square
        : public std::binary_function< Quotient<NT>, Quotient<NT>&, bool > {
    public:
        bool operator()( Quotient<NT> x, Quotient<NT>& y ) const {
            NT x_num, x_den, y_num, y_den;
            x.normalize();
            x_num = x.numerator();
            x_den = x.denominator();

            typename Algebraic_structure_traits<NT>::Is_square is_square;
            bool num_is_square = is_square(x_num,y_num);
            bool den_is_square = is_square(x_den,y_den);
            y= Quotient<NT>(y_num,y_den);
            return num_is_square && den_is_square;
        }
        bool operator()(Quotient<NT> x) const {
            x.normalize();
            typename Algebraic_structure_traits<NT>::Is_square is_square;
            return is_square(x.numerator())&&is_square(x.denominator());
        }

    };

    typedef typename boost::mpl::if_c<
        !boost::is_same< typename Algebraic_structure_traits<NT>::Sqrt,
                         Null_functor >::value,
         typename INTERN_QUOTIENT::Sqrt_selector< Type,
                                                  Is_exact >::Sqrt,
         Null_functor
                            >::type Sqrt;

    class Simplify
      : public std::unary_function< Type&, void > {
      public:
        void operator()( Type& x) const {
            x.normalize();
        }
    };
};


template<class NT> class Real_embeddable_traits_quotient_base;
// Real embeddable traits
template < class NT > class Real_embeddable_traits_quotient_base< Quotient<NT> >
  : public INTERN_RET::Real_embeddable_traits_base< Quotient<NT>,
                  typename Real_embeddable_traits< NT >::Is_real_embeddable > {
  public:
    typedef Quotient<NT> Type;

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& x,
                                            const Type& y ) const {
          return quotient_cmp(x, y);
        }
    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& x ) const {
        // Original global function was marked with an TODO!!
          if (x.num == 0 )
            return 0;

          double nd = CGAL_NTS to_double( x.num );

          if (x.den == 1 )
            return nd;

          double dd = CGAL_NTS to_double( x.den );

          if ( CGAL_NTS is_finite( x.den ) && CGAL_NTS is_finite( x.num ) )
            return nd/dd;

          if ( CGAL_NTS abs(x.num) > CGAL_NTS abs(x.den) )
          {
              NT  nt_div = x.num / x.den;
              double divd = CGAL_NTS to_double(nt_div);
              if ( divd >= std::ldexp(1.0,53) )
              { return divd; }
          }
          if ( CGAL_NTS abs(x.num) < CGAL_NTS abs(x.den) )
          { return 1.0 / CGAL_NTS to_double( NT(1) / x ); }

          return nd/dd;
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {
          Interval_nt<> quot =
                          Interval_nt<>(CGAL_NTS to_interval(x.numerator())) /
                          Interval_nt<>(CGAL_NTS to_interval(x.denominator()));
          return std::make_pair(quot.inf(), quot.sup());
        }
    };

    class Is_finite
      : public std::unary_function< Type, bool > {
      public:
        bool operator()( const Type& x ) const {
          return CGAL_NTS is_finite(x.num) && CGAL_NTS is_finite(x.den);
        }
    };
};
} // namespace INTERN_QUOTIENT

template< class NT > class Algebraic_structure_traits< Quotient<NT> >
    : public INTERN_QUOTIENT::Algebraic_structure_traits_quotient_base<
Quotient<NT> >{};

template< class NT > class Real_embeddable_traits< Quotient<NT> >
    : public INTERN_QUOTIENT::Real_embeddable_traits_quotient_base<
Quotient<NT> >{};


// self coercion
CGAL_DEFINE_COERCION_TRAITS_FOR_SELF_TEM( Quotient<NT>, class NT)

// from int to Quotient
template <class NT>
struct Coercion_traits<typename First_if_different<int, NT>::Type,Quotient<NT> >
{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_true  Are_implicit_interoperable;
    typedef Quotient<NT> Type;
    struct Cast{
        typedef Type result_type;
        Type operator()(const Quotient<NT>& x)   const { return x;}
        Type operator()(
                const typename First_if_different<int, NT>::Type& x) const {
            return Type(x);}
    };
};
template <class NT>
struct Coercion_traits<Quotient<NT>,typename First_if_different<int, NT>::Type>
    :public Coercion_traits<typename First_if_different<int, NT>::Type,
Quotient<NT> >{};

// from double to Quotient
template <class NT>
struct Coercion_traits<typename First_if_different<double, NT>::Type,
Quotient<NT> >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_true  Are_implicit_interoperable;
    typedef Quotient<NT> Type;
    struct Cast{
        typedef Type result_type;
        Type operator()(const Quotient<NT>& x)   const { return x;}
        Type operator()(
                const typename First_if_different<double, NT>::Type& x) const {
            return Type(x);}
    };
};
template <class NT>
struct Coercion_traits<Quotient<NT>,
typename First_if_different<double, NT>::Type>
    :public Coercion_traits<typename First_if_different<double, NT>::Type,
Quotient<NT> >
{};

// from NT to Quotient
CGAL_DEFINE_COERCION_TRAITS_FROM_TO_TEM ( NT, Quotient<NT>, class NT)

/*! \ingroup NiX_Fraction_traits_spec
 *  \brief Specialization of Fraction_traits for Quotient<NT>
 */
template <class NT>
class Fraction_traits< Quotient<NT> > {
public:
    typedef Quotient<NT> Type;
    typedef ::CGAL::Tag_true Is_fraction;
    typedef NT Numerator_type;
    typedef Numerator_type Denominator_type;

    //TODO: check whether Numerator_type has a GCD.
    //will use Scalar_factor from Scalar_factor_traits (not implemented yet)
    //for more details see EXACUS:NumeriX/include/NiX/Scalar_factor_traits.h
    typedef typename Algebraic_structure_traits< Numerator_type >::Gcd Common_factor;

    class Decompose {
    public:
        typedef Type first_argument_type;
        typedef Numerator_type& second_argument_type;
        typedef Numerator_type& third_argument_type;
        void operator () (
                const Type& rat,
                Numerator_type& num,
                Numerator_type& den) {
            num = rat.numerator();
            den = rat.denominator();
        }
    };

    class Compose {
    public:
        typedef Numerator_type first_argument_type;
        typedef Numerator_type second_argument_type;
        typedef Type result_type;
        Type operator ()(
                const Numerator_type& num ,
                const Numerator_type& den ) {
            Type result(num, den);
            return result;
        }
    };
};

} //namespace CGAL

namespace Eigen {
  template<class> struct NumTraits;
  template<class NT> struct NumTraits<CGAL::Quotient<NT> >
  {
    typedef CGAL::Quotient<NT> Real;
    typedef CGAL::Quotient<NT> NonInteger;
    typedef CGAL::Quotient<NT> Nested;
    typedef CGAL::Quotient<NT> Literal;

    static inline Real epsilon() { return NumTraits<NT>::epsilon(); }
    static inline Real dummy_precision() { return NumTraits<NT>::dummy_precision(); }

    enum {
      IsInteger = 0,
      IsSigned = 1,
      IsComplex = 0,
      RequireInitialization = NumTraits<NT>::RequireInitialization,
      ReadCost = 2*NumTraits<NT>::ReadCost,
      AddCost = 150,
      MulCost = 100
    };
  };
}

#endif  // CGAL_QUOTIENT_H