/usr/include/CGAL/Quotient.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 | // Copyright (c) 1999-2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra, Sylvain Pion, Michael Hemmer
// The template class Quotient<NT> is based on the LEDA class
// leda_rational written by Stefan Naeher and Christian Uhrig.
// It is basically a templated version with restricted functionality
// of the version of rational in LEDA release 3.3.
// The modification was done by Stefan.Schirra@mpi-sb.mpg.de
// The include is done before the protect macro on purpose, because
// of a cyclic dependency.
#include <CGAL/number_type_basic.h>
#ifndef CGAL_QUOTIENT_H
#define CGAL_QUOTIENT_H
#include <utility>
#include <istream>
#include <CGAL/Interval_nt.h>
#include <CGAL/Kernel/mpl.h>
#include <boost/operators.hpp>
namespace CGAL {
#define CGAL_int(T) typename First_if_different<int, T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type
// Simplify the quotient numerator/denominator.
// Currently the default template doesn't do anything.
// This function is not documented as a number type requirement for now.
template < typename NT >
inline void
simplify_quotient(NT &, NT &) {}
// This one should be replaced by some functor or tag.
// Meanwhile, the class is specialized for Gmpz, mpz_class, leda_integer.
template < typename NT >
struct Split_double
{
void operator()(double d, NT &num, NT &den) const
{
num = NT(d);
den = 1;
}
};
template <class NT_>
class Quotient
: boost::ordered_field_operators1< Quotient<NT_>
, boost::ordered_field_operators2< Quotient<NT_>, NT_
, boost::ordered_field_operators2< Quotient<NT_>, CGAL_int(NT_)
, boost::ordered_field_operators2< Quotient<NT_>, CGAL_double(NT_)
> > > >
{
public:
typedef NT_ NT;
Quotient()
: num(0), den(1) {}
Quotient(const NT& n)
: num(n), den(1) {}
Quotient(const CGAL_double(NT) & n)
{ Split_double<NT>()(n, num, den); }
Quotient(const CGAL_int(NT) & n)
: num(n), den(1) {}
template <class T>
explicit Quotient(const T& n) : num(n), den(1) {}
template <class T>
Quotient(const Quotient<T>& n) : num(n.numerator()), den(n.denominator()) {}
Quotient& operator=(const NT & n)
{
num = n;
den = 1;
return *this;
}
Quotient& operator=(const CGAL_double(NT) & n)
{
Split_double<NT>()(n, num, den);
return *this;
}
Quotient& operator=(const CGAL_int(NT) & n)
{
num = n;
den = 1;
return *this;
}
#ifdef CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE
template <class T1, class T2>
Quotient(const T1& n, const T2& d) : num(n), den(d)
{ CGAL_precondition( d != 0 ); }
#else
template <class T1, class T2>
Quotient(T1 && n, T2 && d)
: num(std::forward<T1>(n)), den(std::forward<T2>(d))
{ CGAL_postcondition( den != 0 ); }
Quotient(NT && n)
: num(std::move(n)), den(1) {}
Quotient& operator=(NT && n)
{
num = std::move(n);
den = 1;
return *this;
}
#endif
Quotient<NT>& operator+= (const Quotient<NT>& r);
Quotient<NT>& operator-= (const Quotient<NT>& r);
Quotient<NT>& operator*= (const Quotient<NT>& r);
Quotient<NT>& operator/= (const Quotient<NT>& r);
Quotient<NT>& operator+= (const NT& r);
Quotient<NT>& operator-= (const NT& r);
Quotient<NT>& operator*= (const NT& r);
Quotient<NT>& operator/= (const NT& r);
Quotient<NT>& operator+= (const CGAL_int(NT)& r);
Quotient<NT>& operator-= (const CGAL_int(NT)& r);
Quotient<NT>& operator*= (const CGAL_int(NT)& r);
Quotient<NT>& operator/= (const CGAL_int(NT)& r);
Quotient<NT>& operator+= (const CGAL_double(NT)& r);
Quotient<NT>& operator-= (const CGAL_double(NT)& r);
Quotient<NT>& operator*= (const CGAL_double(NT)& r);
Quotient<NT>& operator/= (const CGAL_double(NT)& r);
Quotient<NT>& normalize();
const NT& numerator() const { return num; }
const NT& denominator() const { return den; }
void swap(Quotient &q)
{
using std::swap;
swap(num, q.num);
swap(den, q.den);
}
#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
int tam() const { return std::max(num.tam(), den.tam()); }
#endif
public:
NT num;
NT den;
};
template <class NT>
inline
void swap(Quotient<NT> &p, Quotient<NT> &q)
{
p.swap(q);
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::normalize()
{
if (num == den)
{
num = den = 1;
return *this;
}
if (-num == den)
{
num = -1;
den = 1;
return *this;
}
NT ggt = CGAL_NTS gcd(num, den);
if (ggt != 1 )
{
num = CGAL::integral_division(num, ggt);
den = CGAL::integral_division(den, ggt);
}
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const Quotient<NT>& r)
{
num = num * r.den + r.num * den;
den *= r.den;
simplify_quotient(num, den);
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const Quotient<NT>& r)
{
num = num * r.den - r.num * den;
den *= r.den;
simplify_quotient(num, den);
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const Quotient<NT>& r)
{
num *= r.num;
den *= r.den;
simplify_quotient(num, den);
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const Quotient<NT>& r)
{
CGAL_precondition( r.num != 0 );
num *= r.den;
den *= r.num;
simplify_quotient(num, den);
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const NT& r)
{
num += r * den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const NT& r)
{
num -= r * den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const NT& r)
{
num *= r;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const NT& r)
{
CGAL_precondition( r != 0 );
den *= r;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const CGAL_int(NT)& r)
{
num += r * den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const CGAL_int(NT)& r)
{
num -= r * den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const CGAL_int(NT)& r)
{
num *= r;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const CGAL_int(NT)& r)
{
CGAL_precondition( r != 0 );
den *= r;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator+= (const CGAL_double(NT)& r)
{
//num += r * den;
NT r_num, r_den;
Split_double<NT>()(r,r_num,r_den);
num = num*r_den + r_num*den;
den *=r_den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator-= (const CGAL_double(NT)& r)
{
//num -= r * den;
NT r_num, r_den;
Split_double<NT>()(r,r_num,r_den);
num = num*r_den - r_num*den;
den *= r_den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator*= (const CGAL_double(NT)& r)
{
// num *= r;
NT r_num, r_den;
Split_double<NT>()(r,r_num,r_den);
num *= r_num;
den *= r_den;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Quotient<NT>&
Quotient<NT>::operator/= (const CGAL_double(NT)& r)
{
CGAL_precondition( r != 0 );
NT r_num, r_den;
Split_double<NT>()(r,r_num,r_den);
num *= r_den;
den *= r_num;
return *this;
}
template <class NT>
CGAL_MEDIUM_INLINE
Comparison_result
quotient_cmp(const Quotient<NT>& x, const Quotient<NT>& y)
{
// No assumptions on the sign of den are made
// code assumes that SMALLER == - 1;
CGAL_precondition( SMALLER == static_cast<Comparison_result>(-1) );
int xsign = CGAL_NTS sign(x.num) * CGAL_NTS sign(x.den) ;
int ysign = CGAL_NTS sign(y.num) * CGAL_NTS sign(y.den) ;
if (xsign == 0) return static_cast<Comparison_result>(-ysign);
if (ysign == 0) return static_cast<Comparison_result>(xsign);
// now (x != 0) && (y != 0)
int diff = xsign - ysign;
if (diff == 0)
{
int msign = CGAL_NTS sign(x.den) * CGAL_NTS sign(y.den);
NT leftop = x.num * y.den * msign;
NT rightop = y.num * x.den * msign;
return CGAL_NTS compare(leftop, rightop);
}
else
{
return (xsign < ysign) ? SMALLER : LARGER;
}
}
template <class NT>
std::ostream&
operator<<(std::ostream& s, const Quotient<NT>& r)
{
return s << r.numerator() << '/' << r.denominator();
}
template <class NT>
std::istream&
operator>>(std::istream& in, Quotient<NT>& r)
{
/* format num/den or simply num */
NT num,den=1;
in >> num;
if(!in) return in;
std::istream::sentry s(in); // skip whitespace
if(in.peek()!='/'){
if(!in.good()){
in.clear(std::ios_base::eofbit);
// unlikely to be some other reason?
}
} else {
char c;
in.get(c); // remove the '/'
in >> den;
if(!in) return in;
}
r=Quotient<NT>(num,den);
return in;
}
template< class NT >
inline
Quotient<NT>
operator+( const Quotient<NT>& x ) {
return Quotient<NT>(x);
}
template <class NT>
inline
Quotient<NT>
operator-(const Quotient<NT>& x)
{ return Quotient<NT>(-x.num,x.den); }
template <class NT>
CGAL_MEDIUM_INLINE
NT
quotient_truncation(const Quotient<NT>& r)
{ return (r.num / r.den); }
template <class NT>
CGAL_MEDIUM_INLINE
bool
operator==(const Quotient<NT>& x, const Quotient<NT>& y)
{ return x.num * y.den == x.den * y.num; }
template <class NT>
CGAL_MEDIUM_INLINE
bool
operator==(const Quotient<NT>& x, const NT& y)
{ return x.den * y == x.num; }
template <class NT>
inline
bool
operator==(const Quotient<NT>& x, const CGAL_int(NT) & y)
{ return x.den * y == x.num; }
template <class NT>
inline
bool
operator==(const Quotient<NT>& x, const CGAL_double(NT) & y)
{ return x.den * y == x.num; }
template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const Quotient<NT>& y)
{
return quotient_cmp(x,y) == SMALLER;
}
template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const NT& y)
{
return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
}
template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const CGAL_int(NT)& y)
{
return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
}
template <class NT>
CGAL_MEDIUM_INLINE
bool
operator<(const Quotient<NT>& x, const CGAL_double(NT)& y)
{
return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
}
template <class NT>
inline
bool
operator>(const Quotient<NT>& x, const NT& y)
{ return quotient_cmp(x,Quotient<NT>(y)) == LARGER; }
template <class NT>
inline
bool
operator>(const Quotient<NT>& x, const CGAL_int(NT)& y)
{ return quotient_cmp(x, Quotient<NT>(y)) == LARGER; }
template <class NT>
inline
bool
operator>(const Quotient<NT>& x, const CGAL_double(NT)& y)
{ return quotient_cmp(x, Quotient<NT>(y)) == LARGER; }
template< class NT >
class Is_valid< Quotient<NT> >
: public std::unary_function< Quotient<NT>, bool > {
public :
bool operator()( const Quotient<NT>& x ) const {
return is_valid(x.num) && is_valid(x.den);
}
};
template <class NT>
inline
const NT&
denominator(const Quotient<NT>& q)
{ return q.den ; }
template <class NT>
inline
const NT&
numerator(const Quotient<NT>& q)
{ return q.num ; }
// The min/max are functions are needed since LEDA defines template
// min/max functions which clash with std::min/max with ADL.
template <class NT>
inline
const Quotient<NT>&
min
BOOST_PREVENT_MACRO_SUBSTITUTION
(const Quotient<NT>& p, const Quotient<NT>& q)
{
return (std::min)(p, q);
}
template <class NT>
inline
const Quotient<NT>&
max
BOOST_PREVENT_MACRO_SUBSTITUTION
(const Quotient<NT>& p, const Quotient<NT>& q)
{
return (std::max)(p, q);
}
/*
template <class NT>
NT
gcd(const NT&, const NT&)
{ return NT(1); }
*/
#undef CGAL_double
#undef CGAL_int
//
// Algebraic structure traits
//
namespace INTERN_QUOTIENT {
template< class NT, class Sqrt_functor >
class Sqrt_selector {
public:
class Sqrt
: public std::unary_function< NT, NT > {
public:
NT operator()( const NT& x ) const {
CGAL_precondition(x > 0);
return NT(CGAL_NTS sqrt(x.numerator()*x.denominator()),
x.denominator());
}
};
};
template< class NT >
class Sqrt_selector< NT, Null_functor > {
public:
typedef Null_functor Sqrt;
};
// TODO: Algebraic_category could be Field_with_sqrt_tag, if NT
// is INEXACT (because Sqrt can be inexact) and has a Sqrt-functor.
template<class NT> class Algebraic_structure_traits_quotient_base;
template< class NT > class Algebraic_structure_traits_quotient_base< Quotient<NT> >
: public Algebraic_structure_traits_base< Quotient<NT>, Field_tag > {
public:
typedef Quotient<NT> Type;
typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
typedef Tag_false Is_numerical_sensitive;
class Is_square
: public std::binary_function< Quotient<NT>, Quotient<NT>&, bool > {
public:
bool operator()( Quotient<NT> x, Quotient<NT>& y ) const {
NT x_num, x_den, y_num, y_den;
x.normalize();
x_num = x.numerator();
x_den = x.denominator();
typename Algebraic_structure_traits<NT>::Is_square is_square;
bool num_is_square = is_square(x_num,y_num);
bool den_is_square = is_square(x_den,y_den);
y= Quotient<NT>(y_num,y_den);
return num_is_square && den_is_square;
}
bool operator()(Quotient<NT> x) const {
x.normalize();
typename Algebraic_structure_traits<NT>::Is_square is_square;
return is_square(x.numerator())&&is_square(x.denominator());
}
};
typedef typename boost::mpl::if_c<
!boost::is_same< typename Algebraic_structure_traits<NT>::Sqrt,
Null_functor >::value,
typename INTERN_QUOTIENT::Sqrt_selector< Type,
Is_exact >::Sqrt,
Null_functor
>::type Sqrt;
class Simplify
: public std::unary_function< Type&, void > {
public:
void operator()( Type& x) const {
x.normalize();
}
};
};
template<class NT> class Real_embeddable_traits_quotient_base;
// Real embeddable traits
template < class NT > class Real_embeddable_traits_quotient_base< Quotient<NT> >
: public INTERN_RET::Real_embeddable_traits_base< Quotient<NT>,
typename Real_embeddable_traits< NT >::Is_real_embeddable > {
public:
typedef Quotient<NT> Type;
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return quotient_cmp(x, y);
}
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
// Original global function was marked with an TODO!!
if (x.num == 0 )
return 0;
double nd = CGAL_NTS to_double( x.num );
if (x.den == 1 )
return nd;
double dd = CGAL_NTS to_double( x.den );
if ( CGAL_NTS is_finite( x.den ) && CGAL_NTS is_finite( x.num ) )
return nd/dd;
if ( CGAL_NTS abs(x.num) > CGAL_NTS abs(x.den) )
{
NT nt_div = x.num / x.den;
double divd = CGAL_NTS to_double(nt_div);
if ( divd >= std::ldexp(1.0,53) )
{ return divd; }
}
if ( CGAL_NTS abs(x.num) < CGAL_NTS abs(x.den) )
{ return 1.0 / CGAL_NTS to_double( NT(1) / x ); }
return nd/dd;
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
Interval_nt<> quot =
Interval_nt<>(CGAL_NTS to_interval(x.numerator())) /
Interval_nt<>(CGAL_NTS to_interval(x.denominator()));
return std::make_pair(quot.inf(), quot.sup());
}
};
class Is_finite
: public std::unary_function< Type, bool > {
public:
bool operator()( const Type& x ) const {
return CGAL_NTS is_finite(x.num) && CGAL_NTS is_finite(x.den);
}
};
};
} // namespace INTERN_QUOTIENT
template< class NT > class Algebraic_structure_traits< Quotient<NT> >
: public INTERN_QUOTIENT::Algebraic_structure_traits_quotient_base<
Quotient<NT> >{};
template< class NT > class Real_embeddable_traits< Quotient<NT> >
: public INTERN_QUOTIENT::Real_embeddable_traits_quotient_base<
Quotient<NT> >{};
// self coercion
CGAL_DEFINE_COERCION_TRAITS_FOR_SELF_TEM( Quotient<NT>, class NT)
// from int to Quotient
template <class NT>
struct Coercion_traits<typename First_if_different<int, NT>::Type,Quotient<NT> >
{
typedef Tag_true Are_explicit_interoperable;
typedef Tag_true Are_implicit_interoperable;
typedef Quotient<NT> Type;
struct Cast{
typedef Type result_type;
Type operator()(const Quotient<NT>& x) const { return x;}
Type operator()(
const typename First_if_different<int, NT>::Type& x) const {
return Type(x);}
};
};
template <class NT>
struct Coercion_traits<Quotient<NT>,typename First_if_different<int, NT>::Type>
:public Coercion_traits<typename First_if_different<int, NT>::Type,
Quotient<NT> >{};
// from double to Quotient
template <class NT>
struct Coercion_traits<typename First_if_different<double, NT>::Type,
Quotient<NT> >{
typedef Tag_true Are_explicit_interoperable;
typedef Tag_true Are_implicit_interoperable;
typedef Quotient<NT> Type;
struct Cast{
typedef Type result_type;
Type operator()(const Quotient<NT>& x) const { return x;}
Type operator()(
const typename First_if_different<double, NT>::Type& x) const {
return Type(x);}
};
};
template <class NT>
struct Coercion_traits<Quotient<NT>,
typename First_if_different<double, NT>::Type>
:public Coercion_traits<typename First_if_different<double, NT>::Type,
Quotient<NT> >
{};
// from NT to Quotient
CGAL_DEFINE_COERCION_TRAITS_FROM_TO_TEM ( NT, Quotient<NT>, class NT)
/*! \ingroup NiX_Fraction_traits_spec
* \brief Specialization of Fraction_traits for Quotient<NT>
*/
template <class NT>
class Fraction_traits< Quotient<NT> > {
public:
typedef Quotient<NT> Type;
typedef ::CGAL::Tag_true Is_fraction;
typedef NT Numerator_type;
typedef Numerator_type Denominator_type;
//TODO: check whether Numerator_type has a GCD.
//will use Scalar_factor from Scalar_factor_traits (not implemented yet)
//for more details see EXACUS:NumeriX/include/NiX/Scalar_factor_traits.h
typedef typename Algebraic_structure_traits< Numerator_type >::Gcd Common_factor;
class Decompose {
public:
typedef Type first_argument_type;
typedef Numerator_type& second_argument_type;
typedef Numerator_type& third_argument_type;
void operator () (
const Type& rat,
Numerator_type& num,
Numerator_type& den) {
num = rat.numerator();
den = rat.denominator();
}
};
class Compose {
public:
typedef Numerator_type first_argument_type;
typedef Numerator_type second_argument_type;
typedef Type result_type;
Type operator ()(
const Numerator_type& num ,
const Numerator_type& den ) {
Type result(num, den);
return result;
}
};
};
} //namespace CGAL
namespace Eigen {
template<class> struct NumTraits;
template<class NT> struct NumTraits<CGAL::Quotient<NT> >
{
typedef CGAL::Quotient<NT> Real;
typedef CGAL::Quotient<NT> NonInteger;
typedef CGAL::Quotient<NT> Nested;
typedef CGAL::Quotient<NT> Literal;
static inline Real epsilon() { return NumTraits<NT>::epsilon(); }
static inline Real dummy_precision() { return NumTraits<NT>::dummy_precision(); }
enum {
IsInteger = 0,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = NumTraits<NT>::RequireInitialization,
ReadCost = 2*NumTraits<NT>::ReadCost,
AddCost = 150,
MulCost = 100
};
};
}
#endif // CGAL_QUOTIENT_H
|