This file is indexed.

/usr/include/CGAL/QP_solution.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
// Copyright (c) 1997-2007  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licenseges holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Kaspar Fischer
//               : Bernd Gaertner <gaertner@inf.ethz.ch>
//               : Sven Schoenherr
//               : Franz Wessendorp

#ifndef CGAL_QP_SOLUTION_H
#define CGAL_QP_SOLUTION_H

#include <iostream>
#include <vector>
#include <CGAL/basic.h>
#include <CGAL/Handle_for.h>
#include <CGAL/function_objects.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/QP_solver/assertions.h>
#include <boost/bind.hpp>
#include <boost/function.hpp>

#include <CGAL/boost/iterator/counting_iterator.hpp>
#include <boost/iterator/transform_iterator.hpp>

namespace CGAL {

// forward references
template <typename Q, typename ET, typename Tags>
class QP_solver;

namespace QP_solution_detail {
  template <typename ET>
  class Quotient_normalizer;
  
  template <typename ET>
  class Value_by_index;

  template <typename ET>
  class Unbounded_direction_by_index;

  template <typename ET>
  class Lambda_by_index;
}

// global status type
enum Quadratic_program_status 
  { 
    QP_UPDATE, 
    QP_INFEASIBLE, 
    QP_UNBOUNDED, 
    QP_OPTIMAL 
  };

// abstract base class of all QP-solvers
// -------------------------------------
template <class ET>
class QP_solver_base
{
public:
  // types
  typedef  CGAL::Creator_2< ET, ET, Quotient<ET> >
  U_Quotient_creator;  // unnormalized quotient creator ET x ET -> (ET, ET)

  typedef QP_solution_detail::Quotient_normalizer<ET> 
  Quotient_normalizer; // normalizer (ET, ET) -> (ET, ET)

  typedef boost::function1< Quotient<ET>, ET > 
  Quotient_maker;

  typedef std::vector<int> 
  Indices;

  typedef Indices::iterator    
  Index_mutable_iterator;

  typedef Indices::const_iterator    
  Index_const_iterator;

  typedef typename QP_solution_detail::Value_by_index<ET> Value_by_index;

  typedef typename boost::transform_iterator
  <Value_by_index, boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t> >
  Variable_numerator_iterator;

  typedef boost::transform_iterator
  <Quotient_maker, Variable_numerator_iterator>
  Variable_value_iterator;

  typedef typename QP_solution_detail::Unbounded_direction_by_index<ET> 
  Unbounded_direction_by_index;

  typedef boost::transform_iterator
  <Unbounded_direction_by_index, boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t> >
  Unbounded_direction_iterator;

  typedef typename QP_solution_detail::Lambda_by_index<ET> 
  Lambda_by_index;
  
  typedef boost::transform_iterator
  <Lambda_by_index, boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t> >
  Lambda_numerator_iterator;

  typedef boost::transform_iterator
  <Quotient_maker,Lambda_numerator_iterator>
  Lambda_iterator;

public:

  // virtual access functions to solution that will 
  // be overridden by QP_solver below

  // Solution
  // --------
  virtual ET solution_numerator() const = 0;
  virtual ET solution_denominator() const = 0;
  Quotient<ET> solution( ) const
  { 
    // workaround to please Boost 1.33.1: 
    ET n = solution_numerator();
    ET d = solution_denominator();
    return 
      boost::bind 
      (Quotient_normalizer(), boost::bind
       (U_Quotient_creator(), _1, _2))
      (n, d);
      // (solution_numerator(), solution_denominator());
  }
  virtual Quadratic_program_status status() const = 0;
  virtual int iterations() const = 0;

  // Variable values
  // ---------------
  virtual ET variable_numerator_value (int i) const = 0; 
  virtual const ET& variables_common_denominator( ) const = 0;
  virtual int number_of_variables() const = 0;

  // value type ET
  Variable_numerator_iterator
  original_variables_numerator_begin( ) const
  { return Variable_numerator_iterator 
      (boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(0), 
       Value_by_index(this));}
				  
    
  Variable_numerator_iterator
  original_variables_numerator_end  ( ) const
  { return Variable_numerator_iterator 
      (boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(number_of_variables()) , 
       Value_by_index(this));} 

  // value type Quotient<ET>   
  Variable_value_iterator
  original_variable_values_begin( ) const
  { return Variable_value_iterator
      (original_variables_numerator_begin(),
       boost::bind 
       (boost::bind 
	(Quotient_normalizer(), boost::bind
	 (U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
  }
    
  Variable_value_iterator
  original_variable_values_end  ( ) const
  { return Variable_value_iterator
      (original_variables_numerator_end(),
       boost::bind 
       (boost::bind 
	(Quotient_normalizer(), boost::bind
	 (U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
  }
    
  // Basic variables and constraints
  // -------------------------------
  virtual Index_const_iterator 
  basic_original_variable_indices_begin() const = 0;
  virtual Index_const_iterator 
  basic_original_variable_indices_end() const = 0;
  virtual int number_of_basic_original_variables() const = 0;
  virtual Index_const_iterator 
  basic_constraint_indices_begin() const = 0;
  virtual Index_const_iterator 
  basic_constraint_indices_end() const = 0;
  virtual int number_of_basic_constraints() const = 0;

  // Unboundedness
  // -------------
  virtual ET unbounded_direction_value(int i) const = 0;

  Unbounded_direction_iterator unbounded_direction_begin() const 
  { return Unbounded_direction_iterator 
      (boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(0), 
       Unbounded_direction_by_index(this));}

  // Returns the past-the-end iterator corresponding to
  // unbounded_direction_begin().
  Unbounded_direction_iterator unbounded_direction_end() const
  { return Unbounded_direction_iterator 
      (boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(number_of_variables()), 
       Unbounded_direction_by_index(this));}


  // Optimality
  // ----------
  virtual ET lambda_numerator(int i) const = 0;
  virtual int number_of_constraints() const = 0;

  // value type ET
  Lambda_numerator_iterator 
  lambda_numerator_begin() const 
  { return Lambda_numerator_iterator 
      (boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(0), 
       Lambda_by_index(this));}

  Lambda_numerator_iterator 
  lambda_numerator_end() const
  { return Lambda_numerator_iterator 
      (boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(number_of_constraints()), 
       Lambda_by_index(this));}

  // value type Quotient<ET>
  Lambda_iterator
  lambda_begin() const
  {
    return Lambda_iterator
     (lambda_numerator_begin(),
      boost::bind 
      (boost::bind 
       (Quotient_normalizer(), boost::bind
	(U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
  }

  Lambda_iterator
  lambda_end() const
  {
    return Lambda_iterator
     (lambda_numerator_end(),
      boost::bind 
      (boost::bind 
       (Quotient_normalizer(), boost::bind
	(U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
  }

  // destruction
  // -----------
  virtual ~QP_solver_base() {}
};


// Quadratic_program_solution class: a handle for QP_solver_base<ET>
// ----------------------------------------------------------------- 
template <class ET_>
class Quadratic_program_solution: Handle_for<const QP_solver_base<ET_>*> 
{
public:
  typedef ET_ ET;
  // interface types
  // ===============

  // variable values / indices
  // -------------------------
  typedef typename QP_solver_base<ET>::Variable_value_iterator
  Variable_value_iterator;

  typedef typename QP_solver_base<ET>::Variable_numerator_iterator
  Variable_numerator_iterator;

  typedef typename QP_solver_base<ET>::Index_const_iterator
  Index_iterator;

  // certificates
  // ------------
  typedef typename QP_solver_base<ET>::Unbounded_direction_iterator
  Unboundedness_certificate_iterator;
  
  typedef 
  typename QP_solver_base<ET>::Lambda_numerator_iterator
  Optimality_certificate_numerator_iterator;
  
  typedef typename QP_solver_base<ET>::Lambda_iterator
  Optimality_certificate_iterator;

  typedef typename QP_solver_base<ET>::Lambda_numerator_iterator
  Infeasibility_certificate_iterator;

  // methods
  // -------
  Quadratic_program_solution ()
    : Handle_for<const QP_solver_base<ET>*>(), et0(0)
  {
    *(this->ptr()) = 0; // unitialized solution
  }

  Quadratic_program_solution (const QP_solver_base<ET>* s)
    : Handle_for<const QP_solver_base<ET>*>(s), et0(0)
  {}

  Quadratic_program_solution& 
  operator= (const Quadratic_program_solution& sol)
  {
    if (this != &sol) {
      // delete the old solver if necessary
      if (!this->is_shared()) delete *(this->ptr());
      this->Handle_for<const QP_solver_base<ET>*>::operator=(sol);
    }
    return *this;
  }

  ~Quadratic_program_solution()
  {
    if (!this->is_shared()) delete *(this->ptr());
  }

private:
  const QP_solver_base<ET>* solver() const 
  {
    return *(this->Ptr());
  }

public:
  bool is_void() const 
  {
    return solver() == 0;
  }

  Quotient<ET> objective_value() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->solution();
  }

  ET objective_value_numerator() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->solution_numerator();
  }

  ET objective_value_denominator() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->solution_denominator();
  }

  Quadratic_program_status status() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->status();
  }

  bool is_optimal() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return status() == QP_OPTIMAL;
  }

  bool is_infeasible() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return status() == QP_INFEASIBLE;
  }

  bool is_unbounded() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return status() == QP_UNBOUNDED;
  }

  int number_of_iterations() const
  { 
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->iterations();
  }

  Variable_value_iterator variable_values_begin() const
  {
   CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
   return solver()->original_variable_values_begin();
  }

  Variable_value_iterator variable_values_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->original_variable_values_end();
  }

  Variable_numerator_iterator variable_numerators_begin() const
  {
   CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
   return solver()->original_variables_numerator_begin();
  }

  Variable_numerator_iterator variable_numerators_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->original_variables_numerator_end();
  }

  const ET& variables_common_denominator() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->variables_common_denominator();
  }

  Index_iterator basic_variable_indices_begin() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->basic_original_variable_indices_begin();
  }

  Index_iterator basic_variable_indices_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->basic_original_variable_indices_end();
  }

  int number_of_basic_variables() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->number_of_basic_original_variables();
  }

  Index_iterator basic_constraint_indices_begin() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->basic_constraint_indices_begin();
  }

  Index_iterator basic_constraint_indices_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->basic_constraint_indices_end();
  }

  int number_of_basic_constraints() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    return solver()->number_of_basic_constraints();
  }

  Optimality_certificate_numerator_iterator 
  optimality_certificate_numerators_begin() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_OPTIMAL);
    return solver()->lambda_numerator_begin();
  }

  Optimality_certificate_numerator_iterator 
  optimality_certificate_numerators_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_OPTIMAL);
    return solver()->lambda_numerator_end();
  }

  Optimality_certificate_iterator 
  optimality_certificate_begin() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_OPTIMAL);
    return solver()->lambda_begin();
  }

  Optimality_certificate_iterator 
  optimality_certificate_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_OPTIMAL);
    return solver()->lambda_end();
  }

  // infeasibility
  // -------------
  Infeasibility_certificate_iterator 
  infeasibility_certificate_begin() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_INFEASIBLE);
    return solver()->lambda_numerator_begin();
  }

  Infeasibility_certificate_iterator 
  infeasibility_certificate_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_INFEASIBLE);
    return solver()->lambda_numerator_end();
  }
  
  // unboundedness
  // -------------
  Unboundedness_certificate_iterator unboundedness_certificate_begin() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_UNBOUNDED);
    return solver()->unbounded_direction_begin();
  }

  Unboundedness_certificate_iterator unboundedness_certificate_end() const
  {
    CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
    CGAL_qpe_assertion(status() == QP_UNBOUNDED);
    return solver()->unbounded_direction_end();
  }

private:
  ET et0; // 0

  // validity
  // --------
  
  // error message returned by failing validation
  std::string err_msg;

  // the error message is set by the following function
  bool error (const std::string& message) 
  {
    err_msg = message;
    return false;
  }

public:
  bool is_valid() const
  {
    return err_msg.empty();
  }

  const std::string& get_error() const
  {
    return err_msg;
  }

  // these four methods use the certificates to validate the solution
  // of all four program types; in case this fails, the solution becomes
  // invalid (and this explains why the methods are non-const)
  template <class QuadraticProgram>
  bool solves_quadratic_program 
  (const QuadraticProgram& qp)
  { return solves_program(qp, Tag_false(), Tag_false()); }

  template <class LinearProgram>
  bool solves_linear_program 
  (const LinearProgram& lp)
  { return solves_program(lp, Tag_true(), Tag_false()); }

  template <class NonnegativeQuadraticProgram>
  bool solves_nonnegative_quadratic_program 
  (const NonnegativeQuadraticProgram& qp)
  { return solves_program(qp, Tag_false(), Tag_true()); }

  template <class NonnegativeLinearProgram>
  bool solves_nonnegative_linear_program 
  (const NonnegativeLinearProgram& lp)
  { return solves_program(lp, Tag_true(), Tag_true()); }

  // helper used by all four validation methods above; see
  // QP_solver/QP_solution_impl.h for its implementation 
  template <class Program, typename Is_linear, typename Is_nonnegative>
  bool solves_program (const Program& p, 
		       Is_linear is_linear, Is_nonnegative is_nonnegative);

private:
  // helpers used by the previous method 
  template <typename Program>
  bool is_feasible (const Program& p, 
		    typename std::vector<ET>& ax_minus_b,
		    Tag_true /*is_nonnegative*/);
  template <typename Program>
  bool is_feasible (const Program& p, 
		    typename std::vector<ET>& ax_minus_b,
		    Tag_false /*is_nonnegative*/);

  template <typename Program>
  bool is_optimal_1 (const Program& p);

  template <typename Program>
  bool is_optimal_2 (const Program& p, 
		     const typename std::vector<ET>& ax_minus_b);

  template <typename Program>
  bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
		     Tag_true /*is_linear*/, Tag_true /*is_nonnegative*/);
  template <typename Program>
  bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
		     Tag_false /*is_linear*/, Tag_true /*is_nonnegative*/);
  template <typename Program>
  bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
		     Tag_true /*is_linear*/, Tag_false /*is_nonnegative*/);
  template <typename Program>
  bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
		     Tag_false /*is_linear*/, Tag_false /*is_nonnegative*/);

  template <typename Program>
  bool is_infeasible_1 (const Program& p);

  template <typename Program>
  bool is_infeasible_2 (const Program& p, 
			typename std::vector<ET>& lambda_a,
			Tag_true /*is_nonnegative*/);
  template <typename Program>
  bool is_infeasible_2 (const Program& p, 
			typename std::vector<ET>& lambda_a,
			Tag_false /*is_nonnegative*/);

  template <typename Program>
  bool is_infeasible_3 (const Program& p, 
			const typename std::vector<ET>& /*lambda_a*/,
			Tag_true /*is_nonnegative*/); 
  template <typename Program>
  bool is_infeasible_3 (const Program& p, 
			const typename std::vector<ET>& lambda_a,
			Tag_false /*is_nonnegative*/);
 
  template <typename Program>
  bool is_unbounded_1 (const Program& p);
 
  template <typename Program>
  bool is_unbounded_2 (const Program& p, Tag_true /*is_nonnegative*/);
  template <typename Program>
  bool is_unbounded_2 (const Program& p, Tag_false /*is_nonnegative*/);

  template <typename Program>
  bool is_unbounded_3 (const Program& p, Tag_true /*is_linear*/);
  template <typename Program>
  bool is_unbounded_3 (const Program& p, Tag_false /*is_linear*/);

  template <typename Program>
  bool is_value_correct 
  (const Program& p, typename std::vector<ET>& /*two_Dx*/, 
   Tag_true /*is_linear*/); 
  
  template <typename Program>
  bool is_value_correct 
  (const Program& p, typename std::vector<ET>& two_Dx,
   Tag_false /*is_linear*/); 

  template <typename Program>
  bool are_constraints_feasible 
  (const Program& p, typename std::vector<ET>& ax);

  template <typename Program>
  bool are_bounds_feasible (const Program& p,  Tag_true /*is_nonnegative*/);
  template <typename Program>
  bool are_bounds_feasible (const Program& p,  Tag_false /*is_nonnegative*/);
  
  template <typename Program, typename Z_iterator >
  void add_Az 
  (const Program& p, Z_iterator z, typename std::vector<ET>& v);

  template <typename Program, typename Z_iterator >
  void add_two_Dz 
  (const Program& p, Z_iterator z, typename std::vector<ET>& v);
  
  template <typename Program, typename Z_iterator >
  void add_zA 
  (const Program& p, Z_iterator z, typename std::vector<ET>& v);

  template <typename Program>
  void add_c
  (const Program& p, typename std::vector<ET>& v);

}; 

// output
template <typename ET>
std::ostream& operator<<
  (std::ostream& o, const Quadratic_program_solution<ET>& s)
{
  o << "status:          ";
  switch (s.status()) {
  case QP_INFEASIBLE:
    return o << "INFEASIBLE\n";
  case QP_UNBOUNDED:
    return o << "UNBOUNDED\n";
  case QP_OPTIMAL:
    o << "OPTIMAL\n";
    break;
  default:
    CGAL_qpe_assertion(false);
  }
  o << "objective value: " << s.objective_value() << "\n";
  o << "variable values:\n";
  int j=0;
  for ( typename Quadratic_program_solution<ET>::Variable_value_iterator 
	  it = s.variable_values_begin(); 
	it < s.variable_values_end(); ++it, ++j)
    o << "  " << j << ": " << *it << "\n";
  return o; 
}

// Details
namespace QP_solution_detail {
  // Quotient_normalizer
  // -------------------
  template < typename ET>
  class Quotient_normalizer {
  public:
    typedef CGAL::Quotient<ET> result_type;
   
  private:
      typedef CGAL::Algebraic_structure_traits<ET> AST;
      typedef typename AST::Algebraic_category Category; 
    
  public:
      typedef CGAL::Boolean_tag<
      CGAL::is_same_or_derived<CGAL::Unique_factorization_domain_tag,Category>::value> 
      Has_gcd;
    
      typedef CGAL::Boolean_tag<
      CGAL::is_same_or_derived<CGAL::Integral_domain_tag,Category>::value> 
      Has_exact_division;

    CGAL::Quotient<ET> normalize 
    (const CGAL::Quotient<ET>& q, 
     Tag_true /*has_gcd*/,
     Tag_true /*has_exact_division*/) const
    {
      if (CGAL::is_zero (q.numerator()))
	return CGAL::Quotient<ET>(ET(0), ET(1));
      ET gcd = CGAL::gcd (q.numerator(), q.denominator());
      return CGAL::Quotient<ET> 
	(CGAL::integral_division (q.numerator(), gcd),
	 CGAL::integral_division (q.denominator(), gcd));
    }  

    CGAL::Quotient<ET> normalize 
    (const CGAL::Quotient<ET>& q, 
     Tag_true /*has_gcd*/,
     Tag_false /*has_exact_division*/) const
    {
      return q;
    }
  
    CGAL::Quotient<ET> normalize 
    (const CGAL::Quotient<ET>& q, 
     Tag_false /*has_gcd*/,
     Tag_true /*has_exact_division*/) const
    {
      return q;
    }

    CGAL::Quotient<ET> normalize 
    (const CGAL::Quotient<ET>& q, 
     Tag_false /*has_gcd*/,
     Tag_false /*has_exact_division*/) const
    {
      return q;
    }

    CGAL::Quotient<ET> operator() (const CGAL::Quotient<ET>& q) const
    {
      return normalize (q, Has_gcd(), Has_exact_division());
    }
  };

  // Value_by_index
  // --------------
  template < typename ET>
  class Value_by_index : public std::unary_function< std::size_t, ET>
  {
  public:
    typedef QP_solver_base<ET> QP;
    typedef ET result_type;

    Value_by_index(const QP* solver)
      : s (solver)
    {}

    // returns value * denominator 
    result_type operator () ( std::size_t i) const
    {
      return s->variable_numerator_value(static_cast<int>(i));
    }
    
    const QP* s;
  };

  // Unbounded_direction_by_index
  // ----------------------------
  template < typename ET>
  class Unbounded_direction_by_index : public std::unary_function< std::size_t, ET>
  {
  public:
    typedef QP_solver_base<ET> QP;
    typedef ET result_type;

    Unbounded_direction_by_index(const QP* solver)
      : s (solver)
    {}

    result_type operator () ( std::size_t i) const
    {
      return s->unbounded_direction_value(static_cast<int>(i));
    }
      
    const QP* s;
  };

  // Lambda_by_index
  // ---------------
  template < typename ET>
  class Lambda_by_index : public std::unary_function< std::size_t, ET>
  {
  public:
    typedef QP_solver_base<ET> QP;
    typedef ET result_type;

    Lambda_by_index(const QP* solver)
      : s (solver)
    {}

    result_type operator () ( std::size_t i) const
    {
      return s->lambda_numerator(static_cast<int>(i));
    }
      
    const QP* s;
  };
}
} //namespace CGAL

#include <CGAL/QP_solver/QP_solution_impl.h>

#endif// CGAL_QP_SOLUTION_H