/usr/include/CGAL/Polynomial/subresultants.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 | // Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Michael Kerber <mkerber@mpi-inf.mpg.de>
//
// ============================================================================
#ifndef CGAL_POLYNOMIAL_SUBRESULTANTS_H
#define CGAL_POLYNOMIAL_SUBRESULTANTS_H
#include <list>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/bezout_matrix.h>
namespace CGAL {
namespace internal {
// Intern function needed for Ducos algorithm
template<typename Polynomial_traits_d> void lazard_optimization
(typename Polynomial_traits_d::Coefficient_type y,
double n,
typename Polynomial_traits_d::Polynomial_d B,
typename Polynomial_traits_d::Polynomial_d& C) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
CGAL_precondition(n>0);
NT x = typename Polynomial_traits_d::Leading_coefficient() (B);
double a = pow(2.,std::floor(log(n)/log(2.)));
NT c = x;
n -= a;
while(a!=1) {
a/=2;
c=idiv(c*c,y);
if(n>=a) {
c=idiv(c*x,y);
n-=a;
}
}
C=c*B/y;
}
template<typename Polynomial_traits_d>
void lickteig_roy_optimization
(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
typename Polynomial_traits_d::Polynomial_d C,
typename Polynomial_traits_d::Coefficient_type s,
typename Polynomial_traits_d::Polynomial_d& D) {
typedef typename Polynomial_traits_d::Polynomial_d Poly;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Construct_polynomial construct;
typename Polynomial_traits_d::Get_coefficient coeff;
int d = degree(A), e = degree(B);
CGAL_precondition(d>=e);
std::vector<Poly> H(d+1);
std::list<NT> initial;
initial.push_front(lcoeff(C));
for(int i=0;i<e;i++) {
H[i] = construct(initial.begin(),initial.end());
initial.push_front(NT(0));
}
H[e]=construct(initial.begin(),initial.end())-C;
CGAL_assertion(degree(H[e])<e);
initial.clear();
std::copy(H[e].begin(),H[e].end(),std::back_inserter(initial));
initial.push_front(NT(0));
for(int i=e+1;i<d;i++) {
H[i]=construct(initial.begin(),initial.end());
NT h_i_e=H[i].degree()>=e ? coeff(H[i],e) : NT(0);
H[i]-=(h_i_e*B)/lcoeff(B);
initial.clear();
std::copy(H[i].begin(),H[i].end(),std::back_inserter(initial));
initial.push_front(NT(0));
}
H[d]=construct(initial.begin(),initial.end());
D=construct(0);
for(int i=0;i<d;i++) {
D+=A[i]*H[i];
}
D/=lcoeff(A);
NT Hde = degree(H[d])>=e ? coeff(H[d],e) : NT(0);
D=(lcoeff(B)*(H[d]+D)-Hde*B)/s;
if((d-e)%2==0) {
D=-D;
}
return;
}
template<typename Polynomial_traits_d>
typename Polynomial_traits_d::Coefficient_type
resultant_for_constant_polynomial
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
CGAL_assertion(degree(P) < 1 || degree(Q) < 1);
if(is_zero(P) || is_zero(Q) ) {
return NT(0);
}
if(degree(P)==0) {
return CGAL::ipower(lcoeff(P),degree(Q));
} else {
return CGAL::ipower(lcoeff(Q),degree(P));
}
}
/*!
* \brief Compute the sequence of subresultants with pseudo-division
*
* This is an implementation of Ducos' algorithm. It improves on the
* classical methods for subresultant computation by reducing the
* swell-up of intermediate results. For all details, see
* L.Ducos: Optimazations of the Subresultant algorithm. <i>Journal of Pure
* and Applied Algebra</i> <b>145</b> (2000) 149--163
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator prs_polynomial_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Construct_polynomial construct;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
if(degree(P) < 1 || degree(Q) < 1) {
*out++ = Polynomial(CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q));
return out;
}
bool poly_swapped = (degree(P) < degree(Q));
if(poly_swapped) {
std::swap(P,Q);
}
Polynomial zero_pol = construct(NT(0));
std::vector<Polynomial> sres;
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
sres.push_back(Q);
} else {
sres.push_back(CGAL::ipower(lcoeff(Q),deg_diff-1)*Q);
}
Polynomial A,B,C,D,dummy_pol;
NT s,dummy_nt;
int delta,d,e;
A=Q;
s=CGAL::ipower(lcoeff(Q),deg_diff);
typename Polynomial_traits_d::Pseudo_division()
(P, -Q, dummy_pol, B, dummy_nt);
while(true) {
d=degree(A);
e=degree(B);
if(is_zero(B)) {
for(int i=0;i<d;i++) {
sres.push_back(zero_pol);
}
break;
}
sres.push_back(B);
delta=d-e;
if(delta>1) {
CGAL::internal::lazard_optimization<Polynomial_traits_d>
(s,double(delta-1),B,C);
//C=CGAL::ipower(CGAL::integral_division(lcoeff(B),s),delta-1)*B;
for(int i=0;i<delta-2;i++) {
sres.push_back(zero_pol);
}
sres.push_back(C);
}
else {
C=B;
}
if(e==0) {
break;
}
CGAL::internal::lickteig_roy_optimization<Polynomial_traits_d>(A,B,C,s,D);
B=D;
//typename Polynomial_traits_d::Pseudo_division()
// (A, -B, dummy_pol, D, dummy_nt);
//B= D / (CGAL::ipower(s,delta)*lcoeff(A));
A=C;
s=lcoeff(A);
}
CGAL_assertion(static_cast<int>(sres.size())
== degree(Q)+1);
// If P and Q were swapped, correct the signs
if(poly_swapped) {
int p = degree(P);
int q = degree(Q);
for(int i=0;i<=q;i++) {
if((p-i)*(q-i) % 2 == 1) {
sres[q-i]=-sres[q-i];
}
}
}
// Now, reverse the entries
return std::copy(sres.rbegin(),sres.rend(),out);
}
/*!
* \brief Computes the polynomial subresultants
* as minors of the Bezout matrix
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator bezout_polynomial_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Construct_polynomial construct;
if(degree(P) < 1 || degree(Q) < 1) {
*out++ = Polynomial(CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q));
return out;
}
typedef CGAL::internal::Simple_matrix<NT> Matrix;
Matrix M = CGAL::internal::polynomial_subresultant_matrix
<Polynomial_traits_d> (P,Q);
int r = static_cast<int>(M.row_dimension());
for(int i = 0;i < r; i++) {
std::vector<NT> curr_row;
std::copy(M[r-1-i].begin(),
M[r-1-i].end(),
std::back_inserter(curr_row));
//std::reverse(curr_row.begin(),curr_row.end());
*out++ = construct(curr_row.rbegin(),curr_row.rend());
}
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
*out++=Q;
} else if(deg_diff>0) {
*out++=CGAL::ipower(lcoeff(Q),deg_diff-1)*Q;
} else {
*out++=CGAL::ipower(lcoeff(P),-deg_diff-1)*P;
}
return out;
}
/*!
* \brief Compute the sequence of principal subresultants
* with pseudo-division
*
* Uses Ducos algorithm for the polynomial subresultant, and
* returns the formal leading coefficients.
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator prs_principal_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Get_coefficient coeff;
std::vector<Polynomial> sres;
int q = (std::min)(degree(Q),degree(P));
CGAL::internal::prs_polynomial_subresultants<Polynomial_traits_d>
(P,Q,std::back_inserter(sres));
CGAL_assertion(static_cast<int>(sres.size()) == q+1);
for(int i=0; i <= q; i++) {
int d = degree(sres[i]);
CGAL_assertion(d<=i);
if(d<i) {
*out++ = NT(0);
} else {
*out++ = coeff(sres[i],i);
}
}
return out;
}
/*!
* \brief Compute the sequence of principal subresultants
* with minors of the Bezout matrix
*
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator bezout_principal_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
if(degree(P) < 1 || degree(Q) < 1) {
*out++ = CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q);
return out;
}
typedef CGAL::internal::Simple_matrix<NT> Matrix;
Matrix M = CGAL::internal::polynomial_subresultant_matrix
<Polynomial_traits_d> (P,Q,1);
int r = static_cast<int>(M.row_dimension());
for(int i = r - 1;i >=0; i--) {
*out++=M[i][i];
}
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
*out++=NT(1);
} else if(deg_diff>0) {
*out++=CGAL::ipower(lcoeff(Q),deg_diff);
} else {
*out++=CGAL::ipower(lcoeff(P),-deg_diff);
}
return out;
}
/*!
* \brief Computes the subresultants together with the according cofactors
*
* For details, see S.Basu, R.Pollack, M.-F.Roy: Algorithms in Real
* Algebraic Geometry, Second edition, Alg.8.22
*/
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 prs_subresultants_with_cofactors
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Construct_polynomial construct;
if(degree(P) < 1 || degree(Q) < 1) {
*sres_out++ = Polynomial(CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q));
*coP_out++ = Polynomial(lcoeff(Q));
*coQ_out++ = Polynomial(lcoeff(P));
return sres_out;
}
bool poly_swapped = (degree(P) < degree(Q));
if(poly_swapped) {
std::swap(P,Q);
}
Polynomial zero_pol = construct(NT(0));
std::vector<Polynomial> sres, coP, coQ;
#if 0 // old algorithm, there is some problem when deg_diff>1
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
sres.push_back(Q);
} else {
sres.push_back(CGAL::ipower(lcoeff(Q),deg_diff-1)*Q);
}
Polynomial A,B,C,D,Quo, coPA, coPB, coQA, coQB, coPC, coQC;
NT s,m;
int delta,d,e;
coPA = construct(NT(0));
if(deg_diff==0) {
coQA = construct(NT(1));
} else {
coQA = construct(CGAL::ipower(lcoeff(Q),deg_diff-1));
}
coP.push_back(coPA);
coQ.push_back(coQA);
A=Q;
s=CGAL::ipower(lcoeff(Q),deg_diff);
//s=CGAL::ipower(lcoeff(Q),1);
typename Polynomial_traits_d::Pseudo_division() (P, -Q, Quo, B, m);
coPB = construct(m);
coQB = Quo;
//CGAL_assertion(m*P+Quo*Q==B);
//CGAL_assertion(CGAL::degree(B)<CGAL::degree(-Q));
while(true) {
d=degree(A);
e=degree(B);
if(B.is_zero()) {
for(int i=0;i<d;i++) {
sres.push_back(zero_pol);
coP.push_back(zero_pol);
coQ.push_back(zero_pol);
}
break;
}
sres.push_back(B);
coP.push_back(coPB);
coQ.push_back(coQB);
//CGAL_assertion(coPB*P+coQB*Q==B);
delta=d-e;
if(delta>1) {
C=CGAL::ipower(lcoeff(B),delta-1)*B / CGAL::ipower(s,delta-1);
coPC = CGAL::ipower(lcoeff(B),delta-1)*coPB /
CGAL::ipower(s,delta-1);
coQC = CGAL::ipower(lcoeff(B),delta-1)*coQB /
CGAL::ipower(s,delta-1);
for(int i=0;i<delta-2;i++) {
sres.push_back(zero_pol);
coP.push_back(zero_pol);
coQ.push_back(zero_pol);
}
sres.push_back(C);
coP.push_back(coPC);
coQ.push_back(coQC);
}
else {
C=B;
coPC = coPB;
coQC = coQB;
}
if(e==0) {
break;
}
NT denominator = CGAL::ipower(s,delta)*lcoeff(A);
typename Polynomial_traits_d::Pseudo_division() (A, -B, Quo, D, m);
coPB = (m*coPA + Quo*coPB) / denominator;
coQB = (m*coQA + Quo*coQB) / denominator;
B = D / denominator;
A = C;
coPA = coPC;
coQA = coQC;
s = lcoeff(A);
}
#endif
int p = degree(P);
int q = degree(Q);
bool same_degree = (p==q);
if(same_degree) {
p++;
}
std::vector<Polynomial> sResP,sResU,sResV,C;
std::vector<NT> s,t;
for(int i=0;i<p+1;i++) {
sResP.push_back(construct(NT(0)));
sResU.push_back(construct(NT(0)));
sResV.push_back(construct(NT(0)));
C.push_back(construct(NT(0)));
s.push_back(NT(0));
t.push_back(NT(0));
}
sResP[p]=P;
s[p]=t[p]=(CGAL::sign(lcoeff(P))==CGAL::POSITIVE) ? NT(1) : NT(-1);
sResP[p-1]=Q;
t[p-1]=lcoeff(Q);
sResU[p]=sResV[p-1]=construct(NT(1));
sResV[p]=sResU[p-1]=construct(NT(0));
if(p-q>1) {
NT eps_p_minus_1 = ((p-q)%4==0 || (p-q)%4==1) ? NT(1) : NT(-1);
sResP[q]=eps_p_minus_1*CGAL::ipower(lcoeff(Q),p-q-1)*Q;
s[q]=eps_p_minus_1*CGAL::ipower(lcoeff(Q),p-q);
sResU[q]=construct(NT(0));
sResV[q]=construct(eps_p_minus_1*CGAL::ipower(lcoeff(Q),p-q-1));
for(int i=q+1;i<=p-2;i++) {
sResP[i]=sResU[i]=sResV[i]=construct(NT(0));
s[i]=NT(0);
}
}
int i = p+1;
int j = p;
int k = 0;
while(!CGAL::is_zero(sResP[j-1])) {
k=degree(sResP[j-1]);
if(k>=j-1) {
if(k==0) {
break;
}
s[j-1]=t[j-1];
NT prefac=CGAL::ipower(s[j-1],2);
NT denom=s[j]*t[i-1];
Polynomial Quo,Rem;
NT D;
CGAL::pseudo_division(prefac*sResP[i-1],sResP[j-1],Quo,Rem,D);
C[k-1]=CGAL::integral_division(Quo,D);
sResP[k-1]=CGAL::integral_division
(-prefac*sResP[i-1]+C[k-1]*sResP[j-1],
denom);
sResU[k-1]=CGAL::integral_division
(-prefac*sResU[i-1]+C[k-1]*sResU[j-1],
denom);
sResV[k-1]=CGAL::integral_division
(-prefac*sResV[i-1]+C[k-1]*sResV[j-1],
denom);
} else { // k < j-1
s[j-1]=NT(0);
for(int delta=1;delta<=j-k-1;delta++) {
t[j-delta-1]=CGAL::ipower(NT(-1),delta)*CGAL::integral_division
(t[j-1]*t[j-delta],s[j]);
}
s[k]=t[k];
sResP[k]=CGAL::integral_division(s[k]*sResP[j-1],t[j-1]);
sResU[k]=CGAL::integral_division(s[k]*sResU[j-1],t[j-1]);
sResV[k]=CGAL::integral_division(s[k]*sResV[j-1],t[j-1]);
for(int ell=k+1;ell<=j-2;ell++) {
sResP[ell]=sResU[ell]=sResV[ell]=construct(NT(0));
s[ell]=NT(0);
}
if(k==0) {
break;
}
Polynomial Quo,Rem;
NT D;
NT prefac=s[k]*t[j-1];
CGAL::pseudo_division(prefac*sResP[i-1],sResP[j-1],Quo,Rem,D);
C[k-1]=CGAL::integral_division(Quo,D);
NT denom = s[j]*t[i-1];
sResP[k-1]=CGAL::integral_division
(-prefac*sResP[i-1]+C[k-1]*sResP[j-1],denom);
sResU[k-1]=CGAL::integral_division
(-prefac*sResU[i-1]+C[k-1]*sResU[j-1],denom);
sResV[k-1]=CGAL::integral_division
(-prefac*sResV[i-1]+C[k-1]*sResV[j-1],denom);
}
t[k-1]=lcoeff(sResP[k-1]);
i=j;
j=k;
}
if(k>0) {
for(int ell=0;ell<=j-2;ell++) {
sResP[ell]=sResU[ell]=sResV[ell]=construct(NT(0));
s[ell]=NT(0);
}
}
// Correct factors for same degree (hack)
if(same_degree) {
for(int i = q-1;i>=0;i--) {
NT d = lcoeff(Q);
CGAL_assertion(CGAL::divides(d,sResP[i]));
sResP[i]=CGAL::integral_division(sResP[i],d);
CGAL_assertion(CGAL::divides(d,sResU[i]));
sResU[i]=CGAL::integral_division(sResU[i],d);
CGAL_assertion(CGAL::divides(d,sResV[i]));
sResV[i]=CGAL::integral_division(sResV[i],d);
}
}
// Correct the signs (the algorithm computes the signed subresultants)
if(degree(P)==degree(Q)) {
p--;
CGAL_assertion(p==q);
}
for(int i = q;i>=0;i--) {
if((p-i)%4==0 || (p-i)%4==1) {
sres.push_back(sResP[i]);
coP.push_back(sResU[i]);
coQ.push_back(sResV[i]);
} else {
sres.push_back(-sResP[i]);
coP.push_back(-sResU[i]);
coQ.push_back(-sResV[i]);
}
}
CGAL_assertion(static_cast<int>(sres.size())
== degree(Q)+1);
// If P and Q were swapped, correct the signs
if(poly_swapped) {
int p = degree(P);
int q = degree(Q);
for(int i=0;i<=q;i++) {
if((p-i)*(q-i) % 2 == 1) {
sres[q-i] = -sres[q-i];
coP[q-i] = -coP[q-i];
coQ[q-i] = -coQ[q-i];
}
}
for(int i=0;i<=q;i++) {
// Swap coP and coQ:
Polynomial help = coP[i];
coP[i] = coQ[i];
coQ[i] = help;
}
}
// Now, reverse the entries
std::copy(coP.rbegin(),coP.rend(),coP_out);
std::copy(coQ.rbegin(),coQ.rend(),coQ_out);
return std::copy(sres.rbegin(),sres.rend(),sres_out);
}
// the general function for CGAL::Integral_domain_without_division_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
polynomial_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_without_division_tag){
return bezout_polynomial_subresultants<Polynomial_traits_d>(A,B,out);
}
// the specialization for CGAL::Integral_domain_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
polynomial_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_tag){
return prs_polynomial_subresultants<Polynomial_traits_d>(A,B,out);
}
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator polynomial_subresultants_
(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename
CGAL::Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return polynomial_subresultants_<Polynomial_traits_d>
(A,B,out,Algebraic_category());
}
// the general function for CGAL::Integral_domain_without_division_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
principal_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_without_division_tag){
return bezout_principal_subresultants<Polynomial_traits_d>(A,B,out);
}
// the specialization for CGAL::Integral_domain_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
principal_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_tag){
return prs_principal_subresultants<Polynomial_traits_d>(A,B,out);
}
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator principal_subresultants_
(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename
CGAL::Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return principal_subresultants_<Polynomial_traits_d>
(A,B,out,Algebraic_category());
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors_
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out,
CGAL::Integral_domain_tag) {
return prs_subresultants_with_cofactors<Polynomial_traits_d>
(P,Q,sres_out,coP_out,coQ_out);
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors_
(typename Polynomial_traits_d::Polynomial_d /* P */,
typename Polynomial_traits_d::Polynomial_d /* Q */,
OutputIterator1 sres_out,
OutputIterator2 /* coP_out */,
OutputIterator3 /* coQ_out */,
CGAL::Integral_domain_without_division_tag) {
// polynomial_subresultants_with_cofactors requires
// a model of IntegralDomain as coefficient type;
CGAL_static_assertion(sizeof(Polynomial_traits_d)==0);
return sres_out;
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors_
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename
CGAL::Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return polynomial_subresultants_with_cofactors_<Polynomial_traits_d>
(P,Q,sres_out,coP_out,coQ_out,Algebraic_category());
}
/*! \relates CGAL::Polynomial
* \brief compute the polynomial subresultants of the polynomials
* \c A and \c B
*
* If \c n and \c m are the degrees of p and q,
* the routine returns a sequence
* of length min(n,m)+1, the (polynomial) subresultants of \c p and \c q.
* It starts with the resultant of \c p and \c q.
* The <tt>i</tt>th polynomial has degree at most i.
*
* The way the subresultants are computed depends on the Algebra_type.
* In general the subresultant will be computed by the function
* CGAL::bezout_polynomial_subresultants, but if possible the function
* CGAL::prs_polynomial_subresultants is used.
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator polynomial_subresultants
(typename Polynomial_traits_d::Polynomial_d p,
typename Polynomial_traits_d::Polynomial_d q,
OutputIterator out) {
return CGAL::internal::polynomial_subresultants_<Polynomial_traits_d>
(p, q, out);
}
/*! \relates CGAL::Polynomial
* \brief compute the principal subresultants of the polynomials
* \c p and \c q
*
* If \c n and \c m are the degrees of A and B,
* the routine returns a sequence
* of length min(n,m)+1, the (principal) subresultants of \c p and \c q,
* which starts with the resultant of \c p and \c q.
*
* The way the subresultants are computed depends on the Algebra_type.
* In general the subresultant will be computed by the function
* CGAL::bezout_principal_subresultants, but if possible the function
* CGAL::prs_principal_subresultants is used.
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator principal_subresultants
(typename Polynomial_traits_d::Polynomial_d p,
typename Polynomial_traits_d::Polynomial_d q,
OutputIterator out) {
return CGAL::internal::principal_subresultants_<Polynomial_traits_d>
(p, q, out);
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors
(typename Polynomial_traits_d::Polynomial_d p,
typename Polynomial_traits_d::Polynomial_d q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out) {
return CGAL::internal::polynomial_subresultants_with_cofactors_
<Polynomial_traits_d> (p,q,sres_out,coP_out,coQ_out);
}
} // namespace internal
} //namespace CGAL
#endif// CGAL_POLYNOMIAL_SUBRESULTANTS_H
|