This file is indexed.

/usr/include/CGAL/Polynomial/resultant.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Michael Hemmer <hemmer@mpi-inf.mpg.de>


#ifndef CGAL_POLYNOMIAL_RESULTANT_H
#define CGAL_POLYNOMIAL_RESULTANT_H

// Modular arithmetic is slower, hence the default is 0
#ifndef CGAL_RESULTANT_USE_MODULAR_ARITHMETIC
#define CGAL_RESULTANT_USE_MODULAR_ARITHMETIC 0
#endif

#ifndef CGAL_RESULTANT_USE_DECOMPOSE
#define CGAL_RESULTANT_USE_DECOMPOSE 1
#endif 


#include <CGAL/basic.h>
#include <CGAL/Polynomial.h>

#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/Interpolator.h>
#include <CGAL/Polynomial/prs_resultant.h>
#include <CGAL/Polynomial/bezout_matrix.h>

#include <CGAL/Residue.h>
#include <CGAL/Modular_traits.h>
#include <CGAL/Chinese_remainder_traits.h>
#include <CGAL/primes.h>
#include <CGAL/Polynomial/Cached_extended_euclidean_algorithm.h>

namespace CGAL {


// The main function provided within this file is CGAL::internal::resultant(F,G),
// all other functions are used for dispatching. 
// The implementation uses interpolatation for multivariate polynomials
// Due to the recursive structuture of CGAL::Polynomial<Coeff> it is better 
// to write the function such that the inner most variabel is eliminated. 
// However,  CGAL::internal::resultant(F,G) eliminates the outer most variabel.
// This is due to backward compatibility issues with code base on EXACUS. 
// In turn CGAL::internal::resultant_(F,G) eliminates the innermost variable. 
 
// Dispatching
// CGAL::internal::resultant_decompose applies if Coeff is a Fraction
// CGAL::internal::resultant_modularize applies if Coeff is Modularizable
// CGAL::internal::resultant_interpolate applies for multivairate polynomials
// CGAL::internal::resultant_univariate selects the proper algorithm for IC 

// CGAL_RESULTANT_USE_DECOMPOSE ( default = 1 )
// CGAL_RESULTANT_USE_MODULAR_ARITHMETIC (default = 0 ) 

namespace internal{

template <class Coeff> 
inline Coeff resultant_interpolate( 
    const CGAL::Polynomial<Coeff>&, const CGAL::Polynomial<Coeff>& );
template <class Coeff> 
inline Coeff resultant_modularize( 
    const CGAL::Polynomial<Coeff>&, 
    const CGAL::Polynomial<Coeff>&, CGAL::Tag_true);
template <class Coeff> 
inline Coeff resultant_modularize( 
    const CGAL::Polynomial<Coeff>&, 
    const CGAL::Polynomial<Coeff>&, CGAL::Tag_false);
template <class Coeff> 
inline Coeff resultant_decompose( 
    const CGAL::Polynomial<Coeff>&, 
    const CGAL::Polynomial<Coeff>&, CGAL::Tag_true);
template <class Coeff> 
inline Coeff resultant_decompose( 
    const CGAL::Polynomial<Coeff>&, 
    const CGAL::Polynomial<Coeff>&, CGAL::Tag_false);
template <class Coeff> 
inline Coeff resultant_( 
    const CGAL::Polynomial<Coeff>&, const CGAL::Polynomial<Coeff>&);

template <class Coeff> 
inline Coeff resultant_univariate( 
    const CGAL::Polynomial<Coeff>& A, 
    const CGAL::Polynomial<Coeff>& B, 
    CGAL::Integral_domain_without_division_tag){ 
  return hybrid_bezout_subresultant(A,B,0);
}
template <class Coeff> 
inline Coeff resultant_univariate( 
    const CGAL::Polynomial<Coeff>& A, 
    const CGAL::Polynomial<Coeff>& B, CGAL::Integral_domain_tag){
  // this seems to help for for large polynomials 
  return prs_resultant_integral_domain(A,B);
}
template <class Coeff> 
inline Coeff resultant_univariate( 
    const CGAL::Polynomial<Coeff>& A, 
    const CGAL::Polynomial<Coeff>& B, CGAL::Unique_factorization_domain_tag){
  return prs_resultant_ufd(A,B);
}

template <class Coeff> 
inline Coeff resultant_univariate( 
    const CGAL::Polynomial<Coeff>& A, 
    const CGAL::Polynomial<Coeff>& B, CGAL::Field_tag){
  return prs_resultant_field(A,B);  
}

} // namespace internal

namespace internal{


template <class IC> 
inline IC 
resultant_interpolate( 
    const CGAL::Polynomial<IC>& F, 
    const CGAL::Polynomial<IC>& G){
  CGAL_precondition(CGAL::Polynomial_traits_d<CGAL::Polynomial<IC> >::d == 1);
    typedef CGAL::Algebraic_structure_traits<IC> AST_IC;
    typedef typename AST_IC::Algebraic_category Algebraic_category;
    return internal::resultant_univariate(F,G,Algebraic_category()); 
}

template <class Coeff_2> 
inline
CGAL::Polynomial<Coeff_2>  resultant_interpolate(
        const CGAL::Polynomial<CGAL::Polynomial<Coeff_2> >& F, 
        const CGAL::Polynomial<CGAL::Polynomial<Coeff_2> >& G){
    
    typedef CGAL::Polynomial<Coeff_2> Coeff_1;
    typedef CGAL::Polynomial<Coeff_1> POLY;
    typedef CGAL::Polynomial_traits_d<POLY> PT;
    typedef typename PT::Innermost_coefficient_type IC; 

    CGAL_precondition(PT::d >= 2);
    
    typename PT::Degree degree; 
    int maxdegree = degree(F,0)*degree(G,PT::d-1) + degree(F,PT::d-1)*degree(G,0); 

    typedef std::pair<IC,Coeff_2> Point; 
    std::vector<Point> points; // interpolation points  
    
   
    typename CGAL::Polynomial_traits_d<Coeff_1>::Degree  coeff_degree; 
    int i(-maxdegree/2);
    int deg_f(0);
    int deg_g(0);
    
   
    while((int) points.size() <= maxdegree + 1){
        i++;
        // timer1.start();
        Coeff_1 c_i(i);
        Coeff_1 Fat_i(typename PT::Evaluate()(F,c_i));
        Coeff_1 Gat_i(typename PT::Evaluate()(G,c_i));
        // timer1.stop();
        
        int deg_f_at_i = coeff_degree(Fat_i,0);
        int deg_g_at_i = coeff_degree(Gat_i,0);

        // std::cout << F << std::endl;
        // std::cout << Fat_i << std::endl;
        // std::cout << deg_f_at_i << " vs. " << deg_f << std::endl;
        if(deg_f_at_i >  deg_f ){
            points.clear();
            deg_f  = deg_f_at_i;
            CGAL_postcondition(points.size() == 0);
        } 

        if(deg_g_at_i >  deg_g){
            points.clear();
            deg_g  = deg_g_at_i;
            CGAL_postcondition(points.size() == 0);
        }
        
        if(deg_f_at_i ==  deg_f && deg_g_at_i ==  deg_g){
            // timer2.start();
            Coeff_2 res_at_i = resultant_interpolate(Fat_i, Gat_i);
            // timer2.stop();
            points.push_back(Point(IC(i),res_at_i));
            
            // std::cout << typename Polynomial_traits_d<Coeff_2>::Degree()(res_at_i) << std::endl ; 
        }      
    }
   
    // timer3.start();
    CGAL::internal::Interpolator<Coeff_1> interpolator(points.begin(),points.end());
    Coeff_1 result = interpolator.get_interpolant();
    // timer3.stop();

#ifndef CGAL_NDEBUG
    while((int) points.size() <= maxdegree + 3){
        i++;        

        Coeff_1 c_i(i);
        Coeff_1 Fat_i(typename PT::Evaluate()(F,c_i));
        Coeff_1 Gat_i(typename PT::Evaluate()(G,c_i));

        CGAL_assertion(coeff_degree(Fat_i,0) <= deg_f);
        CGAL_assertion(coeff_degree(Gat_i,0) <= deg_g);
        
        if(coeff_degree( Fat_i , 0) ==  deg_f && coeff_degree( Gat_i , 0 ) ==  deg_g){
            Coeff_2 res_at_i = resultant_interpolate(Fat_i, Gat_i);
            points.push_back(Point(IC(i), res_at_i));
        }
    }
    CGAL::internal::Interpolator<Coeff_1> 
      interpolator_(points.begin(),points.end());
    Coeff_1 result_= interpolator_.get_interpolant();
    
     // the interpolate polynomial has to be stable !
    CGAL_assertion(result_ == result); 
#endif 
    return result; 
}

template <class Coeff> 
inline
Coeff resultant_modularize( 
        const CGAL::Polynomial<Coeff>& F, 
        const CGAL::Polynomial<Coeff>& G, 
        CGAL::Tag_false){
    return resultant_interpolate(F,G);
}

template <class Coeff> 
inline
Coeff resultant_modularize( 
        const CGAL::Polynomial<Coeff>& F, 
        const CGAL::Polynomial<Coeff>& G, 
        CGAL::Tag_true){
    
  // Enforce IEEE double precision and to nearest before using modular arithmetic
  CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);
  

    typedef Polynomial_traits_d<CGAL::Polynomial<Coeff> > PT;
    typedef typename PT::Polynomial_d Polynomial;
    
    typedef Chinese_remainder_traits<Coeff> CRT;
    typedef typename CRT::Scalar_type Scalar;


    typedef typename CGAL::Modular_traits<Polynomial>::Residue_type MPolynomial; 
    typedef typename CGAL::Modular_traits<Coeff>::Residue_type      MCoeff; 
        
    typename CRT::Chinese_remainder chinese_remainder; 
    typename CGAL::Modular_traits<Coeff>::Modular_image_representative inv_map;


    typename PT::Degree_vector                                     degree_vector; 
    typename CGAL::Polynomial_traits_d<MPolynomial>::Degree_vector mdegree_vector;

    bool solved = false; 
    int prime_index = 0; 
    int n = 0;
    Scalar p,q,pq,s,t; 
    Coeff R, R_old; 
    
    // CGAL::Timer timer_evaluate, timer_resultant, timer_cr; 
    
    do{
        MPolynomial mF, mG;
        MCoeff mR;
        //timer_evaluate.start();
        do{
            // select a prime number
            int current_prime = -1;
            prime_index++;
            if(prime_index >= 2000){
                std::cerr<<"primes in the array exhausted"<<std::endl;
                CGAL_assertion(false);
                current_prime = internal::get_next_lower_prime(current_prime);
            } else{
                current_prime = internal::primes[prime_index];
            }
            CGAL::Residue::set_current_prime(current_prime);
            
            mF = CGAL::modular_image(F);
            mG = CGAL::modular_image(G);
            
        }while( degree_vector(F) != mdegree_vector(mF) || 
                degree_vector(G) != mdegree_vector(mG));
        //timer_evaluate.stop();
        
        //timer_resultant.start();
        n++;
        mR = resultant_interpolate(mF,mG);
        //timer_resultant.stop();
        //timer_cr.start();
        if(n == 1){ 
            // init chinese remainder
            q =  CGAL::Residue::get_current_prime(); // implicit ! 
            R = inv_map(mR);
        }else{
            // continue chinese remainder
            p = CGAL::Residue::get_current_prime(); // implicit!  
            R_old  = R ;
//            chinese_remainder(q,Gs ,p,inv_map(mG_),pq,Gs);             
//            cached_extended_euclidean_algorithm(q,p,s,t);
            internal::Cached_extended_euclidean_algorithm
                <typename CRT::Scalar_type> ceea;
            ceea(q,p,s,t);
            pq =p*q;
            chinese_remainder(q,p,pq,s,t,R_old,inv_map(mR),R);
            q=pq;
        }
        solved = (R==R_old);
        //timer_cr.stop();       
    } while(!solved);
        
    //std::cout << "Time Evaluate   : " << timer_evaluate.time() << std::endl; 
    //std::cout << "Time Resultant  : " << timer_resultant.time() << std::endl; 
    //std::cout << "Time Chinese R  : " << timer_cr.time() << std::endl; 
    // CGAL_postcondition(R == resultant_interpolate(F,G));
    return R;
    // return resultant_interpolate(F,G);
}


template <class Coeff> 
inline
Coeff resultant_decompose( 
    const CGAL::Polynomial<Coeff>& F,
    const CGAL::Polynomial<Coeff>& G, 
    CGAL::Tag_false){
#if CGAL_RESULTANT_USE_MODULAR_ARITHMETIC
  typedef CGAL::Polynomial<Coeff> Polynomial; 
  typedef typename Modular_traits<Polynomial>::Is_modularizable Is_modularizable; 
  return resultant_modularize(F,G,Is_modularizable());
#else
  return  resultant_modularize(F,G,CGAL::Tag_false());
#endif
}

template <class Coeff> 
inline
Coeff resultant_decompose( 
        const CGAL::Polynomial<Coeff>& F, 
        const CGAL::Polynomial<Coeff>& G, 
        CGAL::Tag_true){  
    
    typedef Polynomial<Coeff> POLY;
    typedef typename Fraction_traits<POLY>::Numerator_type Numerator;
    typedef typename Fraction_traits<POLY>::Denominator_type Denominator;
    typename Fraction_traits<POLY>::Decompose decompose;
    typedef typename Numerator::NT RES;
    
    Denominator a, b;
    // F.simplify_coefficients(); not const 
    // G.simplify_coefficients(); not const 
    Numerator F0; decompose(F,F0,a);
    Numerator G0; decompose(G,G0,b);
    Denominator c = CGAL::ipower(a, G.degree()) * CGAL::ipower(b, F.degree());

    RES res0 =  CGAL::internal::resultant_(F0, G0);
    typename Fraction_traits<Coeff>::Compose comp_frac;
    Coeff res = comp_frac(res0, c);
    typename Algebraic_structure_traits<Coeff>::Simplify simplify;
    simplify(res);
    return res;
}


template <class Coeff> 
inline
Coeff resultant_( 
        const CGAL::Polynomial<Coeff>& F, 
        const CGAL::Polynomial<Coeff>& G){
#if CGAL_RESULTANT_USE_DECOMPOSE
    typedef CGAL::Fraction_traits<Polynomial<Coeff > > FT;
    typedef typename FT::Is_fraction Is_fraction; 
    return resultant_decompose(F,G,Is_fraction());
#else
    return resultant_decompose(F,G,CGAL::Tag_false());
#endif
}



template <class Coeff> 
inline
Coeff  resultant( 
        const CGAL::Polynomial<Coeff>& F_, 
        const CGAL::Polynomial<Coeff>& G_){
  // make the variable to be elimnated the innermost one.
    typedef CGAL::Polynomial_traits_d<CGAL::Polynomial<Coeff> > PT;
    CGAL::Polynomial<Coeff> F = typename PT::Move()(F_, PT::d-1, 0);
    CGAL::Polynomial<Coeff> G = typename PT::Move()(G_, PT::d-1, 0);
    return internal::resultant_(F,G);
}

} // namespace internal    
} //namespace CGAL



#endif // CGAL_POLYNOMIAL_RESULTANT_H