This file is indexed.

/usr/include/CGAL/Polyhedron_3.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
// Copyright (c) 1997  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Lutz Kettner  <kettner@mpi-sb.mpg.de>)

#ifndef CGAL_POLYHEDRON_3_H
#define CGAL_POLYHEDRON_3_H 1

#include <CGAL/basic.h>
#include <algorithm>
#include <cstddef>

#include <CGAL/HalfedgeDS_iterator.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/function_objects.h>
#include <CGAL/N_step_adaptor_derived.h>
#include <CGAL/Polyhedron_items_3.h>
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/HalfedgeDS_const_decorator.h>
#include <CGAL/HalfedgeDS_decorator.h>
#include <CGAL/Modifier_base.h>
#include <CGAL/IO/Verbose_ostream.h>
#include <CGAL/Polyhedron_traits_3.h>


namespace CGAL {

template <class VertexBase>
class I_Polyhedron_vertex  : public VertexBase  {
public:
    typedef VertexBase                            Base;
    //typedef typename Base::HalfedgeDS              HDS;
    typedef typename Base::Point                   Point;
    typedef Point                                  Point_3;

    // Handles have to explicitly repeated, although they are derived
    typedef typename Base::Vertex_handle           Vertex_handle;
    typedef typename Base::Halfedge_handle         Halfedge_handle;
    typedef typename Base::Face_handle             Face_handle;
    typedef typename Base::Face_handle             Facet_handle;
    typedef typename Base::Vertex_const_handle     Vertex_const_handle;
    typedef typename Base::Halfedge_const_handle   Halfedge_const_handle;
    typedef typename Base::Face_const_handle       Face_const_handle;
    typedef typename Base::Face_const_handle       Facet_const_handle;
    typedef typename Base::Halfedge                Halfedge;
    typedef typename Base::Face                    Face;
    typedef typename Base::Face                    Facet;

    // Supported options by HDS.
    typedef typename Base::Supports_vertex_halfedge
                                                  Supports_vertex_halfedge;
    typedef typename Base::Supports_vertex_point  Supports_vertex_point;

    // Circulator category.
    typedef typename Halfedge::Supports_halfedge_prev  Supports_prev;

public:
    // Circulator category.
    typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
    typedef typename Ctr::iterator_category circulator_category;

    // Circulators around a vertex and around a facet.
    typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
                                         Halfedge_around_facet_circulator;

    typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
                                        Halfedge_around_vertex_circulator;

    typedef I_HalfedgeDS_facet_circ<
        Halfedge_const_handle,
        circulator_category>       Halfedge_around_facet_const_circulator;

    typedef I_HalfedgeDS_vertex_circ<
        Halfedge_const_handle,
        circulator_category>      Halfedge_around_vertex_const_circulator;



    typedef typename Halfedge_around_vertex_circulator::size_type
        size_type;
    typedef typename Halfedge_around_vertex_circulator::difference_type
        difference_type;

public:
    // We need to repeat the constructors here.
    I_Polyhedron_vertex() {}
    I_Polyhedron_vertex( const VertexBase& b) : VertexBase(b) {}
    I_Polyhedron_vertex( const Point_3& p) : VertexBase(p) {}

// New Access Functions (not provided in VertexBase).

    Halfedge_around_vertex_circulator vertex_begin() {
        // a circulator of halfedges around the vertex (clockwise).
        return Halfedge_around_vertex_circulator( this->halfedge());
    }
    Halfedge_around_vertex_const_circulator vertex_begin() const {
        // a circulator of halfedges around the vertex (clockwise).
        return Halfedge_around_vertex_const_circulator( this->halfedge());
    }

    // the degree of the vertex, i.e., edges emanating from this vertex
    std::size_t vertex_degree() const {
        return this->halfedge()->vertex_degree();
    }
    size_type degree() const { return vertex_degree(); } //backwards compatible

    // returns true if the vertex has exactly two incident edges
    bool is_bivalent() const { return  this->halfedge()->is_bivalent(); }

    // returns true if the vertex has exactly three incident edges
    bool is_trivalent() const { return  this->halfedge()->is_trivalent(); }

    // No longer hidden. Now the restricted version with precondition.
    // sets incident halfedge to h. Precondition: h is incident, i.e.,
    // h->vertex() == v.
    void  set_halfedge( Halfedge_handle hh) {
        CGAL_assertion( &*(hh->vertex()) == this);
        Base::set_halfedge(hh);
    }
};

// A halfedge is an oriented edge. Both orientations exist, i.e.
// an edge is represented by two opposite halfedges. The geometric
// relations are as follows:
//
//              _ _ _   .
//             /        |\.
//                      | \.
//           /             \ next half
//                          \ edge
//         /                 \.
//
//        |                   O  incident vertex
//                facet      ,
//        |                 /| |
//                         / | | opposite
//         \                 | | half edge
//                      half | |
//           \          edge | | /
//                           | |/
//             \_ _ _ _ _ _    '
//

template <class HalfedgeBase>
class I_Polyhedron_halfedge : public HalfedgeBase {
public:
    typedef HalfedgeBase                          Base;
    typedef typename Base::HalfedgeDS              HDS;

    // Handles have to explicitly repeated, although they are derived
    typedef typename Base::Vertex_handle           Vertex_handle;
    typedef typename Base::Halfedge_handle         Halfedge_handle;
    typedef typename Base::Face_handle             Face_handle;
    typedef typename Base::Face_handle             Facet_handle;
    typedef typename Base::Vertex_const_handle     Vertex_const_handle;
    typedef typename Base::Halfedge_const_handle   Halfedge_const_handle;
    typedef typename Base::Face_const_handle       Face_const_handle;
    typedef typename Base::Face_const_handle       Facet_const_handle;

    typedef typename Base::Vertex                  Vertex;
    typedef typename Base::Face                    Face;
    typedef typename Base::Face                    Facet;

    // Supported options by HDS.
    typedef typename Base::Supports_halfedge_prev Supports_halfedge_prev;
    typedef typename Base::Supports_halfedge_vertex
                                                  Supports_halfedge_vertex;
    typedef typename Base::Supports_halfedge_face Supports_halfedge_face;

    // Circulator category.
    typedef typename Base::Supports_halfedge_prev Supports_prev;

public:
    // Circulator category.
    typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
    typedef typename Ctr::iterator_category circulator_category;

    // Circulators around a vertex and around a facet.
    typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
                                         Halfedge_around_facet_circulator;

    typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
                                        Halfedge_around_vertex_circulator;

    typedef I_HalfedgeDS_facet_circ<
        Halfedge_const_handle,
        circulator_category>       Halfedge_around_facet_const_circulator;

    typedef I_HalfedgeDS_vertex_circ<
        Halfedge_const_handle,
        circulator_category>      Halfedge_around_vertex_const_circulator;



public:
    I_Polyhedron_halfedge() {}
    I_Polyhedron_halfedge( const HalfedgeBase& b) : HalfedgeBase(b) {}

// New Access Functions (not provided in HalfedgeBase).

    // Change semantic of prev: it is always available at this level.
    // If the HDS does not provide a prev-function, the previous
    // halfedge will be searched around the incident facet.
private:
    Halfedge_handle       find_prev( Halfedge_handle,       Tag_true) {
        return Base::prev();
    }
    Halfedge_const_handle find_prev( Halfedge_const_handle, Tag_true) const {
        return Base::prev();
    }
    Halfedge_handle find_prev( Halfedge_handle h, Tag_false) const {
        CGAL_precondition( &*h != this); // we have at least 2-gons
        while ( &*(h->next()) != this)
            h = h->next();
        return h;
    }
    Halfedge_const_handle find_prev( Halfedge_const_handle h, Tag_false) const{
        CGAL_precondition( &*h != this); // we have at least 2-gons
        while ( &*(h->next()) != this)
            h = h->next();
        return h;
    }

public:
    Halfedge_handle       prev() {
        return find_prev( this->next(), Supports_halfedge_prev());
    }
    Halfedge_const_handle prev() const {
        return find_prev( this->next(), Supports_halfedge_prev());
    }

    // Make face-functions also available as facet-functions.
    Face_handle           facet()       { return this->face();}
    Face_const_handle     facet() const { return this->face();}


    // the next halfedge around the vertex (clockwise). This is equal to
    // `h.next()->opposite()'.
    Halfedge_handle       next_on_vertex() { return this->next()->opposite(); }
    Halfedge_const_handle next_on_vertex() const {
        return this->next()->opposite();
    }

    // the previous halfedge around the vertex (counterclockwise). Is
    // equal to `h.opposite()->prev()'.
    Halfedge_handle       prev_on_vertex() { return this->opposite()->prev(); }
    Halfedge_const_handle prev_on_vertex() const {
        return this->opposite()->prev();
    }

    bool is_border_edge() const {
        // is true if `h' or `h.opposite()' is a border halfedge.
        return (this->opposite()->is_border() || this->is_border());
    }

    // a circulator of halfedges around the vertex (clockwise).
    Halfedge_around_vertex_circulator vertex_begin() {
        return Halfedge_around_vertex_circulator(
            HDS::halfedge_handle(this));
    }
    Halfedge_around_vertex_const_circulator vertex_begin() const {
        return Halfedge_around_vertex_const_circulator(
            HDS::halfedge_handle(this));
    }

    // a circulator of halfedges around the facet (counterclockwise).
    Halfedge_around_facet_circulator facet_begin() {
        return Halfedge_around_facet_circulator(
            HDS::halfedge_handle(this));
    }
    Halfedge_around_facet_const_circulator facet_begin() const {
        return Halfedge_around_facet_const_circulator(
            HDS::halfedge_handle(this));
    }

    // the degree of the incident vertex, i.e., edges emanating from this
    // vertex
    std::size_t vertex_degree() const {
        return circulator_size( vertex_begin());
    }

    // the degree of the incident facet, i.e., edges on the boundary of this
    // facet
    std::size_t facet_degree() const {
        return circulator_size( facet_begin());
    }

    // returns true if the incident vertex has exactly two incident edges
    bool is_bivalent() const {
        CGAL_precondition( this != &* (this->next()->opposite()));
        return  (this == &* (this->next()->opposite()->next()->opposite()));
    }

    // returns true if the incident vertex has exactly three incident edges
    bool is_trivalent() const {
        CGAL_precondition( this != &* (this->next()->opposite()));
        return  (   this != &* (this->next()->opposite()->next()->opposite())
                 && this == &* (this->next()->opposite()->next()->opposite()
                                ->next()->opposite()));
    }

    // returns true if the incident facet is a triangle.
    bool is_triangle() const {
        CGAL_precondition( this != &* (this->next()));
        CGAL_precondition( this != &* (this->next()->next()));
        return  (this == &* (this->next()->next()->next()));
    }

    // returns true if the incident facet is a quadrilateral.
    bool is_quad()     const {
        CGAL_precondition( this != &* (this->next()));
        CGAL_precondition( this != &* (this->next()->next()));
        return  (this == &* (this->next()->next()->next()->next()));
    }


private:
    // Hide some other functions of H.
    void  set_next( Halfedge_handle hh)  { Base::set_next(hh);}
    void  set_prev( Halfedge_handle hh)  { Base::set_prev(hh);}
    void  set_vertex( Vertex_handle vv)  { Base::set_vertex(vv);}
    void  set_face( Face_handle ff)      { Base::set_face(ff);}
    void  set_facet( Face_handle ff)     { set_face(ff);}
};


template <class FacetBase>
class I_Polyhedron_facet  : public FacetBase  {
public:
    typedef FacetBase                             Base;
    //typedef typename Base::HalfedgeDS              HDS;
    typedef typename Base::Plane                   Plane;
    typedef Plane                                  Plane_3;

    // Handles have to explicitly repeated, although they are derived
    typedef typename Base::Vertex_handle           Vertex_handle;
    typedef typename Base::Halfedge_handle         Halfedge_handle;
    typedef typename Base::Face_handle             Face_handle;
    typedef typename Base::Face_handle             Facet_handle;
    typedef typename Base::Vertex_const_handle     Vertex_const_handle;
    typedef typename Base::Halfedge_const_handle   Halfedge_const_handle;
    typedef typename Base::Face_const_handle       Face_const_handle;
    typedef typename Base::Face_const_handle       Facet_const_handle;
    typedef typename Base::Vertex                  Vertex;
    typedef typename Base::Halfedge                Halfedge;

    // Supported options by HDS.
    typedef typename Base::Supports_face_halfedge Supports_face_halfedge;
    typedef typename Base::Supports_face_plane    Supports_face_plane;

    // No longer required.
    typedef Tag_false                             Supports_face_normal;

    // Circulator category.
    typedef typename Halfedge::Supports_halfedge_prev  Supports_prev;

public:
    // Circulator category.
    typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
    typedef typename Ctr::iterator_category circulator_category;

    // Circulators around a vertex and around a facet.
    typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
                                         Halfedge_around_facet_circulator;

    typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
                                        Halfedge_around_vertex_circulator;

    typedef I_HalfedgeDS_facet_circ<
        Halfedge_const_handle,
        circulator_category>       Halfedge_around_facet_const_circulator;

    typedef I_HalfedgeDS_vertex_circ<
        Halfedge_const_handle,
        circulator_category>      Halfedge_around_vertex_const_circulator;



    typedef typename Halfedge_around_vertex_circulator::size_type
        size_type;
    typedef typename Halfedge_around_vertex_circulator::difference_type
        difference_type;

public:
    // We need to repeat the constructors here.
    I_Polyhedron_facet() {}
    I_Polyhedron_facet( const FacetBase& b) : FacetBase(b) {}

// New Access Functions (not provided in FacetBase).

    Halfedge_around_facet_circulator facet_begin() {
        // a circulator of halfedges around the facet (counterclockwise).
        return Halfedge_around_facet_circulator( this->halfedge());
    }
    Halfedge_around_facet_const_circulator facet_begin() const {
        // a circulator of halfedges around the facet (counterclockwise).
        return Halfedge_around_facet_const_circulator( this->halfedge());
    }

    // the degree of the incident facet, i.e., edges on the boundary of this
    // facet
    std::size_t facet_degree() const {return this->halfedge()->facet_degree();}
    size_type size() const { return facet_degree(); } // backwards compatible

    // returns true if the facet is a triangle.
    bool is_triangle() const { return this->halfedge()->is_triangle(); }

    // returns true if the facet is a quadrilateral.
    bool is_quad()     const { return this->halfedge()->is_quad(); }

    // No longer hidden. Now the restricted version with precondition.
    // sets incident halfedge to h. Precondition: h is incident, i.e.,
    // h->face() == v.
    void  set_halfedge( Halfedge_handle hh) {
        CGAL_assertion( &*(hh->facet()) == this);
        Base::set_halfedge(hh);
    }
};


template < class Items>
class I_Polyhedron_derived_items_3 {
public:
    template < class Refs, class Traits>
    class Vertex_wrapper {
    public:
        typedef typename Items::template Vertex_wrapper<Refs,Traits> VWrap;
        typedef typename VWrap::Vertex Vertex_base;
        typedef I_Polyhedron_vertex< Vertex_base> Vertex;
    };
    template < class Refs, class Traits>
    class Halfedge_wrapper {
    public:
        typedef typename Items::template Halfedge_wrapper<Refs,Traits> HWrap;
        typedef typename HWrap::Halfedge Halfedge_base;
        typedef I_Polyhedron_halfedge< Halfedge_base> Halfedge;
    };
    template < class Refs, class Traits>
    class Face_wrapper {
    public:
        typedef typename Items::template Face_wrapper<Refs,Traits> FWrap;
        typedef typename FWrap::Face Face_base;
        typedef I_Polyhedron_facet< Face_base> Face;
    };
};


template < class PolyhedronTraits_3,
           class PolyhedronItems_3 = Polyhedron_items_3,
           template < class T, class I, class A>
           class T_HDS = HalfedgeDS_default,
           class Alloc = CGAL_ALLOCATOR(int)>
class Polyhedron_3 {
    //
    // DEFINITION
    //
    // The boundary representation of a 3d-polyhedron P of the type
    // Polyhedron consists of vertices, edges and facets. The
    // vertices are points in space. The edges are straight line
    // segments. The facets are planar polygons. We restrict here
    // the facets to be simple planar polygons without holes and the
    // boundary of the polyhedron to be an oriented 2-manifold. Thus
    // facets are consistently oriented and an edge is incident to
    // exactly two facets. We restrict the representation further
    // that an edge has two distinct incident endpoints and
    // following duality that an edge has two distinct incident
    // facets. The class Polyhedron is able to guarantee
    // the combinatorial properties, but not all geometric
    // properties. Support functions are provided for testing
    // geometric properties, e.g. test for self intersections which
    // is  too expensive to be guaranteed as a class invariant.
public:
    typedef Polyhedron_3< PolyhedronTraits_3, PolyhedronItems_3, T_HDS, Alloc>
                                                  Self;
    typedef PolyhedronTraits_3                    Traits;
    typedef PolyhedronItems_3                     Items;
    typedef I_Polyhedron_derived_items_3<Items>   Derived_items;
    typedef T_HDS< Traits, Derived_items, Alloc>  HDS;
    typedef HDS                                   HalfedgeDS;

    // portability with older CGAL release
    typedef HDS                                   Halfedge_data_structure;

    typedef Alloc                                 Allocator;
    typedef Alloc                                 allocator_type; // STL name

    // Container stuff.
    typedef typename HDS::size_type               size_type;
    typedef typename HDS::difference_type         difference_type;
    typedef typename HDS::iterator_category       iterator_category;
    typedef typename HDS::Supports_removal        Supports_removal;

    // Geometry
    typedef typename Traits::Point_3              Point_3;
    typedef Point_3                               Point;
    typedef typename Traits::Plane_3              Plane_3;
    // No longer required.
    //typedef typename Traits::Normal               Normal;

    // Items
    typedef typename HDS::Vertex                  Vertex;
    typedef typename HDS::Halfedge                Halfedge;
    typedef typename HDS::Face                    Face;

    typedef typename Vertex::Base                 VBase;
    typedef typename Halfedge::Base               HBase;
    typedef typename Face::Base                   FBase;

    // Handles and Iterators
    typedef typename HDS::Vertex_handle           Vertex_handle;
    typedef typename HDS::Halfedge_handle         Halfedge_handle;
    typedef typename HDS::Face_handle             Face_handle;
    typedef typename HDS::Vertex_iterator         Vertex_iterator;
    typedef typename HDS::Halfedge_iterator       Halfedge_iterator;
    typedef typename HDS::Face_iterator           Face_iterator;

    typedef typename HDS::Vertex_const_handle     Vertex_const_handle;
    typedef typename HDS::Halfedge_const_handle   Halfedge_const_handle;
    typedef typename HDS::Face_const_handle       Face_const_handle;
    typedef typename HDS::Vertex_const_iterator   Vertex_const_iterator;
    typedef typename HDS::Halfedge_const_iterator Halfedge_const_iterator;
    typedef typename HDS::Face_const_iterator     Face_const_iterator;

    // Auxiliary iterators for convenience
    typedef Project_point<Vertex>                 Proj_point;
    typedef Iterator_project<Vertex_iterator, Proj_point>
                                                  Point_iterator;
    typedef Iterator_project<Vertex_const_iterator, Proj_point,
        const Point_3&, const Point_3*>           Point_const_iterator;

    typedef Project_plane<Face>                   Proj_plane;
    typedef Iterator_project<Face_iterator, Proj_plane>
                                                  Plane_iterator;
    typedef Iterator_project<Face_const_iterator, Proj_plane,
        const Plane_3&, const Plane_3*>           Plane_const_iterator;

    typedef N_step_adaptor_derived<Halfedge_iterator, 2>
                                                  Edge_iterator;
    typedef N_step_adaptor_derived<Halfedge_const_iterator, 2>
                                                  Edge_const_iterator;

    // All face related types get a related facet type name.
    typedef Face                                  Facet;
    typedef Face_handle                           Facet_handle;
    typedef Face_iterator                         Facet_iterator;
    typedef Face_const_handle                     Facet_const_handle;
    typedef Face_const_iterator                   Facet_const_iterator;

    // Supported options by HDS.
    typedef typename VBase::Supports_vertex_halfedge
                                                  Supports_vertex_halfedge;
    typedef typename HBase::Supports_halfedge_prev  Supports_halfedge_prev;
    typedef typename HBase::Supports_halfedge_prev  Supports_prev;
    typedef typename HBase::Supports_halfedge_vertex
                                                  Supports_halfedge_vertex;
    typedef typename HBase::Supports_halfedge_face  Supports_halfedge_face;
    typedef typename FBase::Supports_face_halfedge  Supports_face_halfedge;

    // Supported options especially for Polyhedron_3.
    typedef typename VBase::Supports_vertex_point   Supports_vertex_point;
    typedef typename FBase::Supports_face_plane     Supports_face_plane;

    // No longer required.
    typedef Tag_false                               Supports_face_normal;

    // Renamed versions for facet
    typedef Supports_halfedge_face  Supports_halfedge_facet;
    typedef Supports_face_halfedge  Supports_facet_halfedge;
    typedef Supports_face_plane     Supports_facet_plane;
    // No longer required.
    typedef Supports_face_normal    Supports_facet_normal;

public:
    // Circulator category.
    typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
    typedef typename Ctr::iterator_category circulator_category;

    // Circulators around a vertex and around a facet.
    typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
                                         Halfedge_around_facet_circulator;

    typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
                                        Halfedge_around_vertex_circulator;

    typedef I_HalfedgeDS_facet_circ<
        Halfedge_const_handle,
        circulator_category>       Halfedge_around_facet_const_circulator;

    typedef I_HalfedgeDS_vertex_circ<
        Halfedge_const_handle,
        circulator_category>      Halfedge_around_vertex_const_circulator;



protected:
    HDS     hds_;  // the boundary representation.
    Traits  m_traits;

public:
    HDS& hds() { return hds_; }
    const HDS& hds() const { return hds_; }

// CREATION
public:

    Polyhedron_3( const Traits& trts = Traits()) : m_traits(trts) {}
        // the empty polyhedron `P'.

    Polyhedron_3( size_type v, size_type h, size_type f,
                  const Traits& traits = Traits())
    : hds_(v,h,f), m_traits(traits) {}
        // a polyhedron `P' with storage reserved for v vertices, h
        // halfedges, and f facets. The reservation sizes are a hint for
        // optimizing storage allocation.

    void reserve( size_type v, size_type h, size_type f) {
        // reserve storage for v vertices, h halfedges, and f facets. The
        // reservation sizes are a hint for optimizing storage allocation.
        // If the `capacity' is already greater than the requested size
        // nothing happens. If the `capacity' changes all iterators and
        // circulators invalidates.
        hds_.reserve(v,h,f);
    }

protected:
    Halfedge_handle
    make_triangle( Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) {
        HalfedgeDS_decorator<HDS> decorator(hds_);
        Halfedge_handle h  = hds_.edges_push_back( Halfedge(), Halfedge());
        h->HBase::set_next( hds_.edges_push_back( Halfedge(), Halfedge()));
        h->next()->HBase::set_next( hds_.edges_push_back( Halfedge(),
                                                         Halfedge()));
        h->next()->next()->HBase::set_next( h);
        decorator.set_prev( h, h->next()->next());
        decorator.set_prev( h->next(), h);
        decorator.set_prev( h->next()->next(), h->next());
        h->opposite()->HBase::set_next( h->next()->next()->opposite());
        h->next()->opposite()->HBase::set_next( h->opposite());
        h->next()->next()->opposite()->HBase::set_next(
            h->next()->opposite());
        decorator.set_prev( h->opposite(), h->next()->opposite());
        decorator.set_prev( h->next()->opposite(),
                            h->next()->next()->opposite());
        decorator.set_prev( h->next()->next()->opposite(), h->opposite());
        // the vertices
        decorator.set_vertex( h, v1);
        decorator.set_vertex( h->next(), v2);
        decorator.set_vertex( h->next()->next(), v3);
        decorator.set_vertex( h->opposite(), v3);
        decorator.set_vertex( h->next()->opposite(), v1);
        decorator.set_vertex( h->next()->next()->opposite(), v2);
        decorator.set_vertex_halfedge( h);
        decorator.set_vertex_halfedge( h->next());
        decorator.set_vertex_halfedge( h->next()->next());
        // the facet
        Facet_handle f = decorator.faces_push_back( Facet());
        decorator.set_face( h, f);
        decorator.set_face( h->next(), f);
        decorator.set_face( h->next()->next(), f);
        decorator.set_face_halfedge( h);
        return h;
    }

    Halfedge_handle
    make_tetrahedron( Vertex_handle v1,
                      Vertex_handle v2,
                      Vertex_handle v3,
                      Vertex_handle v4) {
        HalfedgeDS_decorator<HDS> decorator(hds_);
        Halfedge_handle h  = make_triangle(v1,v2,v3);
        // The remaining tip.
        Halfedge_handle g  = hds_.edges_push_back( Halfedge(), Halfedge());
        decorator.insert_tip( g->opposite(), h->opposite());
        decorator.close_tip( g);
        decorator.set_vertex( g, v4);
        Halfedge_handle e  = hds_.edges_push_back( Halfedge(), Halfedge());
        Halfedge_handle d  = hds_.edges_push_back( Halfedge(), Halfedge());
        decorator.insert_tip( e->opposite(), h->next()->opposite());
        decorator.insert_tip( e, g);
        decorator.insert_tip( d->opposite(),h->next()->next()->opposite());
        decorator.insert_tip( d, e);
        decorator.set_vertex_halfedge( g);
        // facets
        Facet_handle f = decorator.faces_push_back( Facet());
        decorator.set_face( h->opposite(), f);
        decorator.set_face( g, f);
        decorator.set_face( e->opposite(), f);
        decorator.set_face_halfedge( g);
        f = decorator.faces_push_back( Facet());
        decorator.set_face( h->next()->opposite(), f);
        decorator.set_face( e, f);
        decorator.set_face( d->opposite(), f);
        decorator.set_face_halfedge( e);
        f = decorator.faces_push_back( Facet());
        decorator.set_face( h->next()->next()->opposite(), f);
        decorator.set_face( d, f);
        decorator.set_face( g->opposite(), f);
        decorator.set_face_halfedge( d);
        return h;
    }

public:
    Halfedge_handle make_tetrahedron() {
        // the combinatorial structure of a tetrahedron is added to the
        // actual polyhedral surface. Returns an arbitrary halfedge of
        // this structure.
        reserve( 4 + size_of_vertices(),
                12 + size_of_halfedges(),
                 4 + size_of_facets());
        HalfedgeDS_decorator<HDS> decorator(hds_);
        return make_tetrahedron( decorator.vertices_push_back( Vertex()),
                                 decorator.vertices_push_back( Vertex()),
                                 decorator.vertices_push_back( Vertex()),
                                 decorator.vertices_push_back( Vertex()));
    }

    Halfedge_handle make_tetrahedron( const Point_3& p1,
                                      const Point_3& p2,
                                      const Point_3& p3,
                                      const Point_3& p4) {
        reserve( 4 + size_of_vertices(),
                12 + size_of_halfedges(),
                 4 + size_of_facets());
        HalfedgeDS_decorator<HDS> decorator(hds_);
        return make_tetrahedron( decorator.vertices_push_back( Vertex(p1)),
                                 decorator.vertices_push_back( Vertex(p2)),
                                 decorator.vertices_push_back( Vertex(p3)),
                                 decorator.vertices_push_back( Vertex(p4)));

    }

    Halfedge_handle make_triangle() {
        // the combinatorial structure of a single triangle with border
        // edges is added to the actual polyhedral surface. Returns an
        // arbitrary halfedge of this structure.
        reserve( 3 + size_of_vertices(),
                 6 + size_of_halfedges(),
                 1 + size_of_facets());
        HalfedgeDS_decorator<HDS> decorator(hds_);
        return make_triangle( decorator.vertices_push_back( Vertex()),
                              decorator.vertices_push_back( Vertex()),
                              decorator.vertices_push_back( Vertex()));
    }

    Halfedge_handle make_triangle( const Point_3& p1,
                                   const Point_3& p2,
                                   const Point_3& p3) {
        // the single triangle p_1, p_2, p_3 with border edges is added to
        // the actual polyhedral surface. Returns an arbitrary halfedge of
        // this structure.
        reserve( 3 + size_of_vertices(),
                 6 + size_of_halfedges(),
                 1 + size_of_facets());
        HalfedgeDS_decorator<HDS> decorator(hds_);
        return make_triangle( decorator.vertices_push_back( Vertex(p1)),
                              decorator.vertices_push_back( Vertex(p2)),
                              decorator.vertices_push_back( Vertex(p3)));
    }

// Access Member Functions

    allocator_type get_allocator() const { return hds_.get_allocator(); }

    size_type size_of_vertices() const { return hds_.size_of_vertices();}
        // number of vertices.

    size_type size_of_halfedges() const { return hds_.size_of_halfedges();}
        // number of all halfedges (including border halfedges).

    size_type size_of_facets() const { return hds_.size_of_faces();}
        // number of facets.

    bool empty() const { return size_of_halfedges() == 0; }

    bool is_empty() const { return size_of_halfedges() == 0; }

    size_type capacity_of_vertices() const {
        // space reserved for vertices.
        return hds_.capacity_of_vertices();
    }

    size_type capacity_of_halfedges() const {
        // space reserved for halfedges.
        return hds_.capacity_of_halfedges();
    }

    size_type capacity_of_facets() const {
        // space reserved for facets.
        return hds_.capacity_of_faces();
    }

    std::size_t bytes() const {
        // bytes used for the polyhedron.
        return sizeof(Self) - sizeof(HDS) + hds_.bytes();
    }

    std::size_t bytes_reserved() const {
        // bytes reserved for the polyhedron.
        return sizeof(Self) - sizeof(HDS) + hds_.bytes_reserved();
    }

    Vertex_iterator vertices_begin() { return hds_.vertices_begin();}
        // iterator over all vertices.

    Vertex_iterator vertices_end() { return hds_.vertices_end();}

    Halfedge_iterator halfedges_begin() { return hds_.halfedges_begin();}
        // iterator over all halfedges

    Halfedge_iterator halfedges_end() { return hds_.halfedges_end();}

    Facet_iterator facets_begin() { return hds_.faces_begin();}
        // iterator over all facets

    Facet_iterator facets_end() { return hds_.faces_end();}

    // The constant iterators and circulators.

    Vertex_const_iterator vertices_begin() const {
        return hds_.vertices_begin();
    }
    Vertex_const_iterator vertices_end() const {
        return hds_.vertices_end();
    }

    Halfedge_const_iterator halfedges_begin() const {
      return hds_.halfedges_begin();
    }
    Halfedge_const_iterator halfedges_end() const {
        return hds_.halfedges_end();
    }
    Facet_const_iterator facets_begin() const { return hds_.faces_begin();}
    Facet_const_iterator facets_end()   const { return hds_.faces_end();}

    // Auxiliary iterators for convinience
    Point_iterator       points_begin()       { return vertices_begin();}
    Point_iterator       points_end()         { return vertices_end();}

    Point_const_iterator points_begin() const { return vertices_begin();}
    Point_const_iterator points_end()   const { return vertices_end();}

    Plane_iterator       planes_begin()       { return facets_begin();}
    Plane_iterator       planes_end()         { return facets_end();}

    Plane_const_iterator planes_begin() const { return facets_begin();}
    Plane_const_iterator planes_end()   const { return facets_end();}

    Edge_iterator        edges_begin()        { return halfedges_begin();}
        // iterator over all edges. The iterator refers to halfedges, but
        // enumerates only one of the two corresponding opposite
        // halfedges.
    Edge_iterator        edges_end()          { return halfedges_end();}
        // end of the range over all edges.

    Edge_const_iterator  edges_begin()  const { return halfedges_begin();}
    Edge_const_iterator  edges_end()    const { return halfedges_end();}

    Traits&       traits()       { return m_traits; }
    const Traits& traits() const { return m_traits; }


// Combinatorial Predicates

    bool is_closed() const {
        for ( Halfedge_const_iterator i = halfedges_begin();
              i != halfedges_end(); ++i) {
            if ( i->is_border())
                return false;
        }
        return true;
    }

private:
    bool is_pure_bivalent( Tag_true) const {
        for ( Vertex_const_iterator i = vertices_begin();
              i != vertices_end(); ++i)
            if ( ! i->is_bivalent())
                return false;
        return true;
    }
    bool is_pure_bivalent( Tag_false) const {
        for ( Halfedge_const_iterator i = halfedges_begin();
              i != halfedges_end(); ++i)
            if ( ! i->is_bivalent())
                return false;
        return true;
    }

public:
    // returns true if all vertices have exactly two incident edges
    bool is_pure_bivalent() const {
        return is_pure_bivalent( Supports_vertex_halfedge());
    }

private:
    bool is_pure_trivalent( Tag_true) const {
        for ( Vertex_const_iterator i = vertices_begin();
              i != vertices_end(); ++i)
            if ( ! i->is_trivalent())
                return false;
        return true;
    }
    bool is_pure_trivalent( Tag_false) const {
        for ( Halfedge_const_iterator i = halfedges_begin();
              i != halfedges_end(); ++i)
            if ( ! i->is_trivalent())
                return false;
        return true;
    }

public:
    // returns true if all vertices have exactly three incident edges
    bool is_pure_trivalent() const {
        return is_pure_trivalent( Supports_vertex_halfedge());
    }

private:
    bool is_pure_triangle( Tag_true) const {
        for ( Facet_const_iterator i = facets_begin();
              i != facets_end(); ++i)
            if ( ! i->is_triangle())
                return false;
        return true;
    }
    bool is_pure_triangle( Tag_false) const {
        for ( Halfedge_const_iterator i = halfedges_begin();
              i != halfedges_end(); ++i)
            if ( ! i->is_border() && ! i->is_triangle())
                return false;
        return true;
    }

public:
    // returns true if all facets are triangles
    bool is_pure_triangle() const {
        return is_pure_triangle( Supports_facet_halfedge());
    }

private:
    bool is_pure_quad( Tag_true) const {
        for ( Facet_const_iterator i = facets_begin();
              i != facets_end(); ++i)
            if ( ! i->is_quad())
                return false;
        return true;
    }
    bool is_pure_quad( Tag_false) const {
        for ( Halfedge_const_iterator i = halfedges_begin();
              i != halfedges_end(); ++i)
            if ( ! i->is_border() && ! i->is_quad())
                return false;
        return true;
    }

public:
    // returns true if all facets are quadrilaterals
    bool is_pure_quad() const {
        return is_pure_quad( Supports_facet_halfedge());
    }


// Geometric Predicates

    bool
    is_triangle( Halfedge_const_handle h1) const {
        Halfedge_const_handle h2 = h1->next();
        Halfedge_const_handle h3 = h1->next()->next();
        // check halfedge combinatorics.
        // exact two edges at vertices 1, 2, 3.
        if ( h1->opposite()->next() != h3->opposite())    return false;
        if ( h2->opposite()->next() != h1->opposite())    return false;
        if ( h3->opposite()->next() != h2->opposite())    return false;
        // The facet is a triangle.
        if ( h1->next()->next()->next() != h1) return false;

        if ( check_tag( Supports_halfedge_face())
             &&  ! h1->is_border_edge())
            return false;  // implies h2 and h3
        CGAL_assertion( ! h1->is_border() || ! h1->opposite()->is_border());

        // Assert consistency.
        CGAL_assertion( h1 != h2);
        CGAL_assertion( h1 != h3);
        CGAL_assertion( h3 != h2);

        // check prev pointer.
        CGAL_assertion_code( HalfedgeDS_items_decorator<HDS> D;)
        CGAL_assertion(D.get_prev(h1) == Halfedge_handle() ||
                       D.get_prev(h1) == h3);
        CGAL_assertion(D.get_prev(h2) == Halfedge_handle() ||
                       D.get_prev(h2) == h1);
        CGAL_assertion(D.get_prev(h3) == Halfedge_handle() ||
                       D.get_prev(h3) == h2);

        // check vertices.
        CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h2->opposite()));
        CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h3->opposite()));
        CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h1->opposite()));

        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h1) != D.get_vertex(h2));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h1) != D.get_vertex(h3));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h2) != D.get_vertex(h3));

        // check facets.
        CGAL_assertion( D.get_face(h1) == D.get_face(h2));
        CGAL_assertion( D.get_face(h1) == D.get_face(h3));

        return true;
    }

    bool
    is_tetrahedron( Halfedge_const_handle h1) const {
        Halfedge_const_handle h2 = h1->next();
        Halfedge_const_handle h3 = h1->next()->next();
        Halfedge_const_handle h4 = h1->opposite()->next();
        Halfedge_const_handle h5 = h2->opposite()->next();
        Halfedge_const_handle h6 = h3->opposite()->next();
        // check halfedge combinatorics.
        // at least three edges at vertices 1, 2, 3.
        if ( h4 == h3->opposite())    return false;
        if ( h5 == h1->opposite())    return false;
        if ( h6 == h2->opposite())    return false;
        // exact three edges at vertices 1, 2, 3.
        if ( h4->opposite()->next() != h3->opposite())    return false;
        if ( h5->opposite()->next() != h1->opposite())    return false;
        if ( h6->opposite()->next() != h2->opposite())    return false;
        // three edges at v4.
        if ( h4->next()->opposite() != h5) return false;
        if ( h5->next()->opposite() != h6) return false;
        if ( h6->next()->opposite() != h4) return false;
        // All facets are triangles.
        if ( h1->next()->next()->next() != h1) return false;
        if ( h4->next()->next()->next() != h4) return false;
        if ( h5->next()->next()->next() != h5) return false;
        if ( h6->next()->next()->next() != h6) return false;
        // all edges are non-border edges.
        if ( h1->is_border()) return false;  // implies h2 and h3
        CGAL_assertion( ! h2->is_border());
        CGAL_assertion( ! h3->is_border());
        if ( h4->is_border()) return false;
        if ( h5->is_border()) return false;
        if ( h6->is_border()) return false;

        // Assert consistency.
        CGAL_assertion( h1 != h2);
        CGAL_assertion( h1 != h3);
        CGAL_assertion( h3 != h2);
        CGAL_assertion( h4 != h5);
        CGAL_assertion( h5 != h6);
        CGAL_assertion( h6 != h4);

        // check prev pointer.
        CGAL_assertion_code( HalfedgeDS_items_decorator<HDS> D;)
        CGAL_assertion(D.get_prev(h1) == Halfedge_handle() ||
                       D.get_prev(h1) == h3);
        CGAL_assertion(D.get_prev(h2) == Halfedge_handle() ||
                       D.get_prev(h2) == h1);
        CGAL_assertion(D.get_prev(h3) == Halfedge_handle() ||
                       D.get_prev(h3) == h2);
        CGAL_assertion(D.get_prev(h4) == Halfedge_handle() ||
                  D.get_prev(h4) == h1->opposite());
        CGAL_assertion(D.get_prev(h5) == Halfedge_handle() ||
                  D.get_prev(h5) == h2->opposite());
        CGAL_assertion(D.get_prev(h6) == Halfedge_handle() ||
                  D.get_prev(h6) == h3->opposite());

        // check vertices.
        CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h2->opposite()));
        CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h5->opposite()));
        CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h3->opposite()));
        CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h6->opposite()));
        CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h1->opposite()));
        CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h4->opposite()));
        CGAL_assertion( D.get_vertex(h4) == D.get_vertex( h5));
        CGAL_assertion( D.get_vertex(h4) == D.get_vertex( h6));

        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h1) != D.get_vertex(h2));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h1) != D.get_vertex(h3));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h1) != D.get_vertex(h4));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h2) != D.get_vertex(h3));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h2) != D.get_vertex(h4));
        CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
                   D.get_vertex(h3) != D.get_vertex(h4));

        // check facets.
        CGAL_assertion( D.get_face(h1) == D.get_face(h2));
        CGAL_assertion( D.get_face(h1) == D.get_face(h3));
        CGAL_assertion( D.get_face(h4) == D.get_face(h4->next()));
        CGAL_assertion( D.get_face(h4) == D.get_face(h1->opposite()));
        CGAL_assertion( D.get_face(h5) == D.get_face(h5->next()));
        CGAL_assertion( D.get_face(h5) == D.get_face(h2->opposite()));
        CGAL_assertion( D.get_face(h6) == D.get_face(h6->next()));
        CGAL_assertion( D.get_face(h6) == D.get_face(h3->opposite()));

        CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
                   D.get_face(h1) != D.get_face(h4));
        CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
                   D.get_face(h1) != D.get_face(h5));
        CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
                   D.get_face(h1) != D.get_face(h6));
        CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
                   D.get_face(h4) != D.get_face(h5));
        CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
                   D.get_face(h4) != D.get_face(h6));
        CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
                   D.get_face(h5) != D.get_face(h6));

        return true;
    }

// Euler Operators (Combinatorial Modifications)
//
// The following Euler operations modify consistently the combinatorial
// structure of the polyhedral surface. The geometry remains unchanged.

    Halfedge_handle split_facet( Halfedge_handle h, Halfedge_handle g) {
        // split the facet incident to `h' and `g' into two facets with
        // new diagonal between the two vertices denoted by `h' and `g'
        // respectively. The second (new) facet is a copy of the first
        // facet. It returns the new diagonal. The time is proportional to
        // the distance from `h' to `g' around the facet. Precondition:
        // `h' and `g' are incident to the same facet. `h != g' (no
        // loops). `h->next() != g' and `g->next() != h' (no multi-edges).
        reserve( size_of_vertices(),
                 2 + size_of_halfedges(),
                 1 + size_of_facets());
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_precondition( D.get_face(h) == D.get_face(g));
        CGAL_precondition( h != g);
        CGAL_precondition( h != g->next());
        CGAL_precondition( h->next() != g);
        return D.split_face( h, g);
    }

    Halfedge_handle join_facet( Halfedge_handle h) {
        // join the two facets incident to h. The facet incident to
        // `h->opposite()' gets removed. Both facets might be holes.
        // Returns the predecessor of h. The invariant `join_facet(
        // split_facet( h, g))' returns h and keeps the polyhedron
        // unchanged. The time is proportional to the size of the facet
        // removed and the time to compute `h.prev()'. Precondition:
        // `HDS' supports removal of facets. The degree of both
        // vertices incident to h is at least three (no antennas).
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_precondition( circulator_size(h->vertex_begin())
                           >= size_type(3));
        CGAL_precondition( circulator_size(h->opposite()->vertex_begin())
                           >= size_type(3));
        return D.join_face(h);
    }

    Halfedge_handle split_vertex( Halfedge_handle h, Halfedge_handle g) {
        // split the vertex incident to `h' and `g' into two vertices and
        // connects them with a new edge. The second (new) vertex is a
        // copy of the first vertex. It returns the new edge. The time is
        // proportional to the distance from `h' to `g' around the vertex.
        // Precondition: `h' and `g' are incident to the same vertex. `h
        // != g' (no antennas). `h->next() != g' and `g->next() != h'.
        reserve( 1 + size_of_vertices(),
                 2 + size_of_halfedges(),
                 size_of_facets());
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_precondition( D.get_vertex(h) == D.get_vertex(g));
        CGAL_precondition( h != g);
        return D.split_vertex( h, g);
    }

    Halfedge_handle join_vertex( Halfedge_handle h) {
        // join the two vertices incident to h. The vertex denoted by
        // `h->opposite()' gets removed. Returns the predecessor of h. The
        // invariant `join_vertex( split_vertex( h, g))' returns h and
        // keeps the polyhedron unchanged. The time is proportional to
        // the degree of the vertex removed and the time to compute
        // `h.prev()'.
        // Precondition: `HDS' supports removal of vertices. The size of
        // both facets incident to h is at least four (no multi-edges)
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_precondition( circulator_size( h->facet_begin())
                           >= size_type(4));
        CGAL_precondition( circulator_size( h->opposite()->facet_begin())
                           >= size_type(4));
        return D.join_vertex(h);
    }

    Halfedge_handle split_edge( Halfedge_handle h) {
        return split_vertex( h->prev(), h->opposite())->opposite();
    }

    Halfedge_handle flip_edge( Halfedge_handle h) {
        HalfedgeDS_items_decorator<HDS> D;
        return D.flip_edge(h);
    }

    Halfedge_handle create_center_vertex( Halfedge_handle h) {
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_assertion( circulator_size( h->facet_begin())
                        >= size_type(3));
        return D.create_center_vertex(h);
    }

    Halfedge_handle erase_center_vertex( Halfedge_handle h) {
        HalfedgeDS_decorator<HDS> D(hds_);
        return D.erase_center_vertex(h);
    }

// Euler Operators Modifying Genus

    Halfedge_handle split_loop( Halfedge_handle h,
                                Halfedge_handle i,
                                Halfedge_handle j) {
        // cut the polyhedron into two parts along the cycle (h,i,j).
        // Three copies of the vertices and two new triangles will be
        // created. h,i,j will be incident to the first new triangle. The
        // returnvalue will be an halfedge iterator denoting the new
        // halfegdes of the second new triangle which was h beforehand.
        // Precondition: h,i,j are distinct, consecutive vertices of the
        // polyhedron and form a cycle: i.e. `h->vertex() == i->opposite()
        // ->vertex()', ..., `j->vertex() == h->opposite()->vertex()'. The
        // six facets incident to h,i,j are all distinct.
        reserve( 3 + size_of_vertices(),
                 6 + size_of_halfedges(),
                 2 + size_of_facets());
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_precondition( h != i);
        CGAL_precondition( h != j);
        CGAL_precondition( i != j);
        CGAL_precondition( D.get_vertex(h) == D.get_vertex(i->opposite()));
        CGAL_precondition( D.get_vertex(i) == D.get_vertex(j->opposite()));
        CGAL_precondition( D.get_vertex(j) == D.get_vertex(h->opposite()));
        CGAL_precondition( D.get_face(h) == Facet_handle() ||
                           D.get_face(h) != D.get_face(i));
        CGAL_precondition( D.get_face(h) == Facet_handle() ||
                           D.get_face(h) != D.get_face(j));
        CGAL_precondition( D.get_face(i) == Facet_handle() ||
                           D.get_face(i) != D.get_face(j));
        CGAL_precondition( D.get_face(h) == Facet_handle() ||
                           D.get_face(h) != D.get_face(h->opposite()));
        CGAL_precondition( D.get_face(h) == Facet_handle() ||
                           D.get_face(h) != D.get_face(i->opposite()));
        CGAL_precondition( D.get_face(h) == Facet_handle() ||
                           D.get_face(h) != D.get_face(j->opposite()));
        CGAL_precondition( D.get_face(i) == Facet_handle() ||
                           D.get_face(i) != D.get_face(h->opposite()));
        CGAL_precondition( D.get_face(i) == Facet_handle() ||
                           D.get_face(i) != D.get_face(i->opposite()));
        CGAL_precondition( D.get_face(i) == Facet_handle() ||
                           D.get_face(i) != D.get_face(j->opposite()));
        CGAL_precondition( D.get_face(j) == Facet_handle() ||
                           D.get_face(j) != D.get_face(h->opposite()));
        CGAL_precondition( D.get_face(j) == Facet_handle() ||
                           D.get_face(j) != D.get_face(i->opposite()));
        CGAL_precondition( D.get_face(j) == Facet_handle() ||
                           D.get_face(j) != D.get_face(j->opposite()));
        CGAL_precondition( D.get_face(h->opposite()) == Facet_handle() ||
            D.get_face(h->opposite()) != D.get_face(i->opposite()));
        CGAL_precondition( D.get_face(h->opposite()) == Facet_handle() ||
            D.get_face(h->opposite()) != D.get_face(j->opposite()));
        CGAL_precondition( D.get_face(i->opposite()) == Facet_handle() ||
            D.get_face(i->opposite()) != D.get_face(j->opposite()));
        return D.split_loop( h, i, j);
    }

    Halfedge_handle join_loop( Halfedge_handle h, Halfedge_handle g) {
        // glues the boundary of two facets together. Both facets and the
        // vertices of g gets removed. Returns an halfedge iterator for h.
        // The invariant `join_loop( h, split_loop( h, i, j))' returns h
        // and keeps the polyhedron unchanged. Precondition: `HDS'
        // supports removal of vertices and facets. The facets denoted by
        // h and g have equal size.
        HalfedgeDS_decorator<HDS> D(hds_);
        CGAL_precondition( D.get_face(h) == Facet_handle() ||
                           D.get_face(h) != D.get_face(g));
        CGAL_precondition( circulator_size( h->facet_begin())
                           >= size_type(3));
        CGAL_precondition( circulator_size( h->facet_begin())
                           == circulator_size( g->facet_begin()));
        return D.join_loop( h, g);
    }

// Modifying Facets and Holes

    Halfedge_handle make_hole( Halfedge_handle h) {
        // removes incident facet and makes all halfedges incident to the
        // facet to border edges. Returns h. Precondition: `HDS'
        // supports removal of facets. `! h.is_border()'.
        HalfedgeDS_decorator<HDS> D(hds_);
        return D.make_hole(h);
    }

    Halfedge_handle fill_hole( Halfedge_handle h) {
        // fill a hole with a new created facet. Makes all border
        // halfedges of the hole denoted by h incident to the new facet.
        // Returns h. Precondition: `h.is_border()'.
        reserve( size_of_vertices(),
                 size_of_halfedges(),
                 1 + size_of_facets());
        HalfedgeDS_decorator<HDS> D(hds_);
        return D.fill_hole(h);
    }

    Halfedge_handle add_vertex_and_facet_to_border( Halfedge_handle h,
                                                    Halfedge_handle g) {
        // creates a new facet within the hole incident to h and g by
        // connecting the tip of g with the tip of h with two new
        // halfedges and a new vertex and filling this separated part of
        // the hole with a new facet. Returns the new halfedge incident to
        // the new facet and the new vertex. Precondition: `h->is_border(
        // )', `g->is_border()', `h != g', and g can be reached along the
        // same hole starting with h.
        CGAL_precondition( h != g);
        reserve( 1 + size_of_vertices(),
                 4 + size_of_halfedges(),
                 1 + size_of_facets());
        HalfedgeDS_decorator<HDS> D(hds_);
        Halfedge_handle hh = D.add_face_to_border( h, g);
        CGAL_assertion( hh == g->next());
        D.split_vertex( g, hh->opposite());
        return g->next();
    }

    Halfedge_handle add_facet_to_border( Halfedge_handle h,
                                         Halfedge_handle g) {
        // creates a new facet within the hole incident to h and g by
        // connecting the tip of g with the tip of h with a new halfedge
        // and filling this separated part of the hole with a new facet.
        // Returns the new halfedge incident to the new facet.
        // Precondition: `h->is_border()', `g->is_border()', `h != g',
        // `h->next() != g', and g can be reached along the same hole
        // starting with h.
        CGAL_precondition( h != g);
        CGAL_precondition( h->next() != g);
        reserve( size_of_vertices(),
                 2 + size_of_halfedges(),
                 1 + size_of_facets());
        HalfedgeDS_decorator<HDS> D(hds_);
        return D.add_face_to_border( h, g);
    }

// Erasing

    void erase_facet( Halfedge_handle h) {
        // removes the incident facet of h and changes all halfedges
        // incident to the facet into border edges or removes them from
        // the polyhedral surface if they were already border edges. See
        // `make_hole(h)' for a more specialized variant. Precondition:
        // `Traits' supports removal.
        HalfedgeDS_decorator<HDS> D(hds_);
        D.erase_face(h);
    }

    void erase_connected_component( Halfedge_handle h) {
        // removes the vertices, halfedges, and facets that belong to the
        // connected component of h. Precondition: `Traits' supports
        // removal.
        HalfedgeDS_decorator<HDS> D(hds_);
        D.erase_connected_component(h);
    }

    /// Erases the small connected components and the isolated vertices.
    ///
    /// @commentheading Preconditions:
    /// supports vertices, halfedges, and removal operation.
    ///
    /// @commentheading Template Parameters:
    /// @param nb_components_to_keep the number of large connected components to keep.
    ///
    /// @return the number of connected components erased (ignoring isolated vertices).
    unsigned int keep_largest_connected_components(unsigned int nb_components_to_keep)
    {
        HalfedgeDS_decorator<HDS> D(hds_);
        return D.keep_largest_connected_components(nb_components_to_keep);
    }

    void clear() { hds_.clear(); }
        // removes all vertices, halfedges, and facets.

    void erase_all() { clear(); }
        // equivalent to `clear()'. Depricated.

// Special Operations on Polyhedral Surfaces

    void delegate( Modifier_base<HDS>& modifier) {
        // calls the `operator()' of the `modifier'. Precondition: The
        // `modifier' returns a consistent representation.
        modifier( hds_);
        CGAL_expensive_postcondition( is_valid());
    }

// Operations with Border Halfedges

    size_type size_of_border_halfedges() const {
        // number of border halfedges. An edge with no incident facet
        // counts as two border halfedges. Precondition: `normalize_border
        // ()' has been called and no halfedge insertion or removal and no
        // change in border status of the halfedges have occured since
        // then.
        return hds_.size_of_border_halfedges();
    }

    size_type size_of_border_edges() const {
        // number of border edges. If `size_of_border_edges() ==
        // size_of_border_halfedges()' all border edges are incident to a
        // facet on one side and to a hole on the other side.
        // Precondition: `normalize_border()' has been called and no
        // halfedge insertion or removal and no change in border status of
        // the halfedges have occured since then.
        return hds_.size_of_border_edges();
    }

    Halfedge_iterator border_halfedges_begin() {
        // halfedge iterator starting with the border edges. The range [
        // `halfedges_begin(), border_halfedges_begin()') denotes all
        // non-border edges. The range [`border_halfedges_begin(),
        // halfedges_end()') denotes all border edges. Precondition:
        // `normalize_border()' has been called and no halfedge insertion
        // or removal and no change in border status of the halfedges have
        // occured since then.
        return hds_.border_halfedges_begin();
    }
    Halfedge_const_iterator border_halfedges_begin() const {
        return hds_.border_halfedges_begin();
    }

    // Convenient edge iterator
    Edge_iterator border_edges_begin() { return border_halfedges_begin(); }
    Edge_const_iterator border_edges_begin() const {
        return border_halfedges_begin();
    }

    bool normalized_border_is_valid( bool verbose = false) const {
        // checks whether all non-border edges precedes the border edges.
        HalfedgeDS_const_decorator<HDS> decorator(hds_);
        bool valid = decorator.normalized_border_is_valid( verbose);
        for ( Halfedge_const_iterator i = border_halfedges_begin();
              valid && (i != halfedges_end()); (++i, ++i)) {
            if ( i->is_border()) {
                Verbose_ostream verr(verbose);
                verr << "    both halfedges of an edge are border "
                        "halfedges." << std::endl;
                valid = false;
            }
        }
        return valid;
    }

    void normalize_border() {
        // sorts halfedges such that the non-border edges precedes the
        // border edges.
        hds_.normalize_border();
        CGAL_postcondition( normalized_border_is_valid());
    }

protected:            // Supports_face_plane
    void inside_out_geometry( Tag_false) {}
    void inside_out_geometry( Tag_true) {
        typename Traits::Construct_opposite_plane_3 opp
            = traits().construct_opposite_plane_3_object();
        std::transform( planes_begin(), planes_end(), planes_begin(), opp);
    }

public:
    void inside_out() {
        // reverse facet orientation.
        HalfedgeDS_decorator<HDS> decorator(hds_);
        decorator.inside_out();
        inside_out_geometry( Supports_face_plane());
    }

    bool is_valid( bool verb = false, int level = 0) const {
        // checks the combinatorial consistency.
        Verbose_ostream verr(verb);
        verr << "begin CGAL::Polyhedron_3<...>::is_valid( verb=true, "
                          "level = " << level << "):" << std::endl;
        HalfedgeDS_const_decorator<HDS> D(hds_);
        bool valid = D.is_valid( verb, level + 3);
        // All halfedges.
        Halfedge_const_iterator i   = halfedges_begin();
        Halfedge_const_iterator end = halfedges_end();
        size_type  n = 0;
        for( ; valid && (i != end); ++i) {
            verr << "halfedge " << n << std::endl;
            // At least triangular facets and distinct geometry.
            valid = valid && ( i->next() != i);
            valid = valid && ( i->next()->next() != i);
            valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
                               D.get_vertex(i) != D.get_vertex(i->opposite()));
            valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
                               D.get_vertex(i) != D.get_vertex(i->next()));
            valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
                        D.get_vertex(i) != D.get_vertex(i->next()->next()));
            if ( ! valid) {
                verr << "    incident facet is not at least a triangle."
                     << std::endl;
                break;
            }
            // Distinct facets on each side of an halfegde.
            valid = valid && ( ! check_tag( Supports_halfedge_face()) ||
                               D.get_face(i) != D.get_face(i->opposite()));
            if ( ! valid) {
                verr << "    both incident facets are equal." << std::endl;
                break;
            }
            ++n;
        }
        valid = valid && (n == size_of_halfedges());
        if ( n != size_of_halfedges())
            verr << "counting halfedges failed." << std::endl;

        verr << "end of CGAL::Polyhedron_3<...>::is_valid(): structure is "
             << ( valid ? "valid." : "NOT VALID.") << std::endl;
        return valid;
    }
};

} //namespace CGAL

#ifndef CGAL_NO_DEPRECATED_CODE
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#endif

#include <CGAL/IO/Polyhedron_iostream.h>

#endif // CGAL_POLYHEDRON_3_H //