/usr/include/CGAL/Delaunay_triangulation.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 | // Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Samuel Hornus
#ifndef CGAL_DELAUNAY_COMPLEX_H
#define CGAL_DELAUNAY_COMPLEX_H
#include <CGAL/tss.h>
#include <CGAL/Triangulation.h>
#include <CGAL/Dimension.h>
#include <CGAL/Default.h>
#include <boost/iterator/transform_iterator.hpp>
#include <algorithm>
namespace CGAL {
template< typename DCTraits, typename _TDS = Default >
class Delaunay_triangulation
: public Triangulation<DCTraits,
typename Default::Get<_TDS, Triangulation_data_structure<
typename DCTraits::Dimension,
Triangulation_vertex<DCTraits>,
Triangulation_full_cell<DCTraits> >
>::type >
{
typedef typename DCTraits::Dimension Maximal_dimension_;
typedef typename Default::Get<_TDS, Triangulation_data_structure<
Maximal_dimension_,
Triangulation_vertex<DCTraits>,
Triangulation_full_cell<DCTraits> >
>::type TDS;
typedef Triangulation<DCTraits, TDS> Base;
typedef Delaunay_triangulation<DCTraits, _TDS> Self;
typedef typename DCTraits::Side_of_oriented_sphere_d
Side_of_oriented_sphere_d;
typedef typename DCTraits::Orientation_d Orientation_d;
public: // PUBLIC NESTED TYPES
typedef DCTraits Geom_traits;
typedef typename Base::Triangulation_ds Triangulation_ds;
typedef typename Base::Vertex Vertex;
typedef typename Base::Full_cell Full_cell;
typedef typename Base::Facet Facet;
typedef typename Base::Face Face;
typedef typename Base::Maximal_dimension Maximal_dimension;
typedef typename DCTraits::Point_d Point;
typedef typename DCTraits::Point_d Point_d;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Vertex_iterator Vertex_iterator;
typedef typename Base::Vertex_const_handle Vertex_const_handle;
typedef typename Base::Vertex_const_iterator Vertex_const_iterator;
typedef typename Base::Full_cell_handle Full_cell_handle;
typedef typename Base::Full_cell_iterator Full_cell_iterator;
typedef typename Base::Full_cell_const_handle Full_cell_const_handle;
typedef typename Base::Full_cell_const_iterator Full_cell_const_iterator;
typedef typename Base::size_type size_type;
typedef typename Base::difference_type difference_type;
typedef typename Base::Locate_type Locate_type;
protected: // DATA MEMBERS
public:
using Base::maximal_dimension;
using Base::are_incident_full_cells_valid;
using Base::coaffine_orientation_predicate;
using Base::reset_flat_orientation;
using Base::current_dimension;
//using Base::star;
//using Base::incident_full_cells;
using Base::geom_traits;
using Base::index_of_covertex;
using Base::infinite_vertex;
using Base::insert_in_hole;
using Base::insert_outside_convex_hull_1;
using Base::is_infinite;
using Base::is_valid;
using Base::locate;
using Base::points_begin;
using Base::set_neighbors;
using Base::new_full_cell;
using Base::number_of_vertices;
using Base::orientation;
using Base::tds;
using Base::reorient_full_cells;
using Base::full_cell;
using Base::full_cells_begin;
using Base::full_cells_end;
using Base::vertices_begin;
using Base::vertices_end;
// using Base::
private:
//*** Side_of_oriented_subsphere_d ***
typedef typename Base::Flat_orientation_d Flat_orientation_d;
typedef typename Base::Construct_flat_orientation_d Construct_flat_orientation_d;
typedef typename DCTraits::In_flat_side_of_oriented_sphere_d In_flat_side_of_oriented_sphere_d;
// Wrapper
struct Side_of_oriented_subsphere_d
{
boost::optional<Flat_orientation_d>* fop;
Construct_flat_orientation_d cfo;
In_flat_side_of_oriented_sphere_d ifsoos;
Side_of_oriented_subsphere_d(
boost::optional<Flat_orientation_d>& x,
Construct_flat_orientation_d const&y,
In_flat_side_of_oriented_sphere_d const&z)
: fop(&x), cfo(y), ifsoos(z) {}
template<class Iter>
CGAL::Orientation operator()(Iter a, Iter b, const Point & p)const
{
if(!*fop)
*fop=cfo(a,b);
return ifsoos(fop->get(),a,b,p);
}
};
public:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UTILITIES
// A co-dimension 2 sub-simplex. called a Rotor because we can rotate
// the two "covertices" around the sub-simplex. Useful for traversing the
// boundary of a hole. NOT DOCUMENTED
typedef cpp11::tuple<Full_cell_handle, int, int> Rotor;
/*Full_cell_handle full_cell(const Rotor & r) const // NOT DOCUMENTED
{
return cpp11::get<0>(r);
}
int index_of_covertex(const Rotor & r) const // NOT DOCUMENTED
{
return cpp11::get<1>(r);
}
int index_of_second_covertex(const Rotor & r) const // NOT DOCUMENTED
{
return cpp11::get<2>(r);
}*/
Rotor rotate_rotor(Rotor & r) // NOT DOCUMENTED...
{
int opposite = cpp11::get<0>(r)->mirror_index(cpp11::get<1>(r));
Full_cell_handle s = cpp11::get<0>(r)->neighbor(cpp11::get<1>(r));
int new_second = s->index(cpp11::get<0>(r)->vertex(cpp11::get<2>(r)));
return Rotor(s, new_second, opposite);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS
Delaunay_triangulation(int dim, const Geom_traits k = Geom_traits())
: Base(dim, k)
{
}
// With this constructor,
// the user can specify a Flat_orientation_d object to be used for
// orienting simplices of a specific dimension
// (= preset_flat_orientation_.first)
// It it used by the dark triangulations created by DT::remove
Delaunay_triangulation(
int dim,
const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
const Geom_traits k = Geom_traits())
: Base(dim, preset_flat_orientation, k)
{
}
~Delaunay_triangulation() {}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS
// Not Documented
Side_of_oriented_subsphere_d side_of_oriented_subsphere_predicate() const
{
return Side_of_oriented_subsphere_d (
flat_orientation_,
geom_traits().construct_flat_orientation_d_object(),
geom_traits().in_flat_side_of_oriented_sphere_d_object()
);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
Full_cell_handle remove(Vertex_handle);
Full_cell_handle remove(const Point & p, Full_cell_handle hint = Full_cell_handle())
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, hint);
if( Base::ON_VERTEX == lt )
{
return remove(s->vertex(f.index(0)));
}
return Full_cell_handle();
}
template< typename ForwardIterator >
void remove(ForwardIterator start, ForwardIterator end)
{
while( start != end )
remove(*start++);
}
// Not documented
void remove_decrease_dimension(Vertex_handle);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS
template< typename ForwardIterator >
size_type insert(ForwardIterator start, ForwardIterator end)
{
size_type n = number_of_vertices();
std::vector<Point> points(start, end);
spatial_sort(points.begin(), points.end(), geom_traits());
Full_cell_handle hint;
for( typename std::vector<Point>::const_iterator p = points.begin(); p != points.end(); ++p )
{
hint = insert(*p, hint)->full_cell();
}
return number_of_vertices() - n;
}
Vertex_handle insert(const Point &, const Locate_type, const Face &, const Facet &, const Full_cell_handle);
Vertex_handle insert(const Point & p, const Full_cell_handle start = Full_cell_handle())
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, start);
return insert(p, lt, f, ft, s);
}
Vertex_handle insert(const Point & p, const Vertex_handle hint)
{
CGAL_assertion( Vertex_handle() != hint );
return insert(p, hint->full_cell());
}
Vertex_handle insert_outside_affine_hull(const Point &);
Vertex_handle insert_in_conflicting_cell(const Point &, const Full_cell_handle);
// - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES
bool is_in_conflict(const Point &, Full_cell_const_handle) const;
template< class OrientationPredicate >
Oriented_side perturbed_side_of_positive_sphere(const Point &,
Full_cell_const_handle, const OrientationPredicate &) const;
template< typename OutputIterator >
Facet compute_conflict_zone(const Point &, const Full_cell_handle, OutputIterator) const;
template < typename OrientationPredicate, typename SideOfOrientedSpherePredicate >
class Conflict_predicate
{
const Self & dc_;
const Point & p_;
OrientationPredicate ori_;
SideOfOrientedSpherePredicate side_of_s_;
int cur_dim_;
public:
Conflict_predicate(
const Self & dc,
const Point & p,
const OrientationPredicate & ori,
const SideOfOrientedSpherePredicate & side)
: dc_(dc), p_(p), ori_(ori), side_of_s_(side), cur_dim_(dc.current_dimension()) {}
inline
bool operator()(Full_cell_const_handle s) const
{
bool ok;
if( ! dc_.is_infinite(s) )
{
Oriented_side side = side_of_s_(dc_.points_begin(s), dc_.points_begin(s) + cur_dim_ + 1, p_);
if( ON_POSITIVE_SIDE == side )
ok = true;
else if( ON_NEGATIVE_SIDE == side )
ok = false;
else
ok = ON_POSITIVE_SIDE == dc_.perturbed_side_of_positive_sphere<OrientationPredicate>(p_, s, ori_);
}
else
{
typedef typename Full_cell::Vertex_handle_const_iterator VHCI;
typedef Substitute_point_in_vertex_iterator<VHCI> F;
F spivi(dc_.infinite_vertex(), &p_);
Orientation o = ori_(
boost::make_transform_iterator(s->vertices_begin(), spivi),
boost::make_transform_iterator(s->vertices_begin() + cur_dim_ + 1,
spivi));
if( POSITIVE == o )
ok = true;
else if( o == NEGATIVE )
ok = false;
else
ok = (*this)(s->neighbor( s->index( dc_.infinite_vertex() ) ));
}
return ok;
}
};
template < typename ConflictPredicate >
class Conflict_traversal_predicate
{
const Self & dc_;
const ConflictPredicate & pred_;
public:
Conflict_traversal_predicate(const Self & dc, const ConflictPredicate & pred)
: dc_(dc), pred_(pred)
{}
inline
bool operator()(const Facet & f) const
{
return pred_(dc_.full_cell(f)->neighbor(dc_.index_of_covertex(f)));
}
};
private:
// Some internal types to shorten notation
typedef typename Base::Coaffine_orientation_d Coaffine_orientation_d;
using Base::flat_orientation_;
typedef Conflict_predicate<Coaffine_orientation_d, Side_of_oriented_subsphere_d>
Conflict_pred_in_subspace;
typedef Conflict_predicate<Orientation_d, Side_of_oriented_sphere_d>
Conflict_pred_in_fullspace;
typedef Conflict_traversal_predicate<Conflict_pred_in_subspace>
Conflict_traversal_pred_in_subspace;
typedef Conflict_traversal_predicate<Conflict_pred_in_fullspace>
Conflict_traversal_pred_in_fullspace;
// This is used in the |remove(v)| member function to manage sets of Full_cell_handles
template< typename FCH >
struct Full_cell_set : public std::vector<FCH>
{
typedef std::vector<FCH> Base_set;
using Base_set::begin;
using Base_set::end;
void make_searchable()
{ // sort the full cell handles
std::sort(begin(), end());
}
bool contains(const FCH & fch) const
{
return std::binary_search(begin(), end(), fch);
}
bool contains_1st_and_not_2nd(const FCH & fst, const FCH & snd) const
{
return ( ! contains(snd) ) && ( contains(fst) );
}
};
};
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE MEMBER METHODS:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Full_cell_handle
Delaunay_triangulation<DCTraits, TDS>
::remove( Vertex_handle v )
{
CGAL_precondition( ! is_infinite(v) );
CGAL_expensive_precondition( is_vertex(v) );
// THE CASE cur_dim == 0
if( 0 == current_dimension() )
{
remove_decrease_dimension(v);
return Full_cell_handle();
}
else if( 1 == current_dimension() )
{ // THE CASE cur_dim == 1
if( 2 == number_of_vertices() )
{
remove_decrease_dimension(v);
return Full_cell_handle();
}
Full_cell_handle left = v->full_cell();
if( is_infinite(left) && left->neighbor(0)->index(left) == 0 ) // we are on the infinite right.
left = left->neighbor(0);
if( 0 == left->index(v) )
left = left->neighbor(1);
CGAL_assertion( 1 == left->index(v) );
Full_cell_handle right = left->neighbor(0);
if( ! is_infinite(right) )
{
tds().associate_vertex_with_full_cell(left, 1, right->vertex(1));
set_neighbors(left, 0, right->neighbor(0), right->mirror_index(0));
}
else
{
tds().associate_vertex_with_full_cell(left, 1, left->vertex(0));
tds().associate_vertex_with_full_cell(left, 0, infinite_vertex());
set_neighbors(left, 0, left->neighbor(1), left->mirror_index(1));
set_neighbors(left, 1, right->neighbor(1), right->mirror_index(1));
}
tds().delete_vertex(v);
tds().delete_full_cell(right);
return left;
}
// THE CASE cur_dim >= 2
// Gather the finite vertices sharing an edge with |v|
typedef Full_cell_set<Full_cell_handle> Simplices;
Simplices simps;
std::back_insert_iterator<Simplices> out(simps);
tds().incident_full_cells(v, out);
typedef std::set<Vertex_handle> Vertex_set;
Vertex_set verts;
Vertex_handle vh;
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
for( int i = 0; i <= current_dimension(); ++i )
{
vh = (*it)->vertex(i);
if( is_infinite(vh) )
continue;
if( vh == v )
continue;
verts.insert(vh);
}
// After gathering finite neighboring vertices, create their Dark Delaunay triangulation
typedef Triangulation_vertex<Geom_traits, Vertex_handle> Dark_vertex_base;
typedef Triangulation_full_cell<Geom_traits,
internal::Triangulation::Dark_full_cell_data<Self> > Dark_full_cell_base;
typedef Triangulation_data_structure<Maximal_dimension, Dark_vertex_base, Dark_full_cell_base> Dark_tds;
typedef Delaunay_triangulation<DCTraits, Dark_tds> Dark_triangulation;
typedef typename Dark_triangulation::Face Dark_face;
typedef typename Dark_triangulation::Facet Dark_facet;
typedef typename Dark_triangulation::Vertex_handle Dark_v_handle;
typedef typename Dark_triangulation::Full_cell_handle Dark_s_handle;
// If flat_orientation_ is defined, we give it the Dark triangulation
// so that the orientation it uses for "current_dimension()"-simplices is
// coherent with the global triangulation
Dark_triangulation dark_side(
maximal_dimension(),
flat_orientation_ ?
std::pair<int, const Flat_orientation_d *>(current_dimension(), flat_orientation_.get_ptr())
: std::pair<int, const Flat_orientation_d *>((std::numeric_limits<int>::max)(), (Flat_orientation_d*) NULL) );
Dark_s_handle dark_s;
Dark_v_handle dark_v;
typedef std::map<Vertex_handle, Dark_v_handle> Vertex_map;
Vertex_map light_to_dark;
typename Vertex_set::iterator vit = verts.begin();
while( vit != verts.end() )
{
dark_v = dark_side.insert((*vit)->point(), dark_s);
dark_s = dark_v->full_cell();
dark_v->data() = *vit;
light_to_dark[*vit] = dark_v;
++vit;
}
if( dark_side.current_dimension() != current_dimension() )
{
CGAL_assertion( dark_side.current_dimension() + 1 == current_dimension() );
// Here, the finite neighbors of |v| span a affine subspace of
// dimension one less than the current dimension. Two cases are possible:
if( (size_type)(verts.size() + 1) == number_of_vertices() )
{
remove_decrease_dimension(v);
return Full_cell_handle();
}
else
{ // |v| is strictly outside the convex hull of the rest of the points. This is an
// easy case: first, modify the finite full_cells, then, delete the infinite ones.
// We don't even need the Dark triangulation.
Simplices infinite_simps;
{
Simplices finite_simps;
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
if( is_infinite(*it) )
infinite_simps.push_back(*it);
else
finite_simps.push_back(*it);
simps.swap(finite_simps);
} // now, simps only contains finite simplices
// First, modify the finite full_cells:
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
{
int v_idx = (*it)->index(v);
tds().associate_vertex_with_full_cell(*it, v_idx, infinite_vertex());
if( v_idx != 0 )
{
// we must put the infinite vertex at index 0.
// OK, now with the new convention that the infinite vertex
// does not have to be at index 0, this is not necessary,
// but still, I prefer to keep this piece of code here. [-- Samuel Hornus]
(*it)->swap_vertices(0, v_idx);
// Now, we preserve the positive orientation of the full_cell
(*it)->swap_vertices(current_dimension() - 1, current_dimension());
}
}
// Make the handles to infinite full cells searchable
infinite_simps.make_searchable();
// Then, modify the neighboring relation
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
{
for( int i = 1; i <= current_dimension(); ++i )
{
(*it)->vertex(i)->set_full_cell(*it);
Full_cell_handle n = (*it)->neighbor(i);
// Was |n| a finite full cell prior to removing |v| ?
if( ! infinite_simps.contains(n) )
continue;
int n_idx = n->index(v);
set_neighbors(*it, i, n->neighbor(n_idx), n->neighbor(n_idx)->index(n));
}
}
Full_cell_handle ret_s;
// Then, we delete the infinite full_cells
for( typename Simplices::iterator it = infinite_simps.begin(); it != infinite_simps.end(); ++it )
tds().delete_full_cell(*it);
tds().delete_vertex(v);
return simps.front();
}
}
else // From here on, dark_side.current_dimension() == current_dimension()
{
dark_side.infinite_vertex()->data() = infinite_vertex();
light_to_dark[infinite_vertex()] = dark_side.infinite_vertex();
}
// Now, compute the conflict zone of v->point() in
// the dark side. This is precisely the set of full_cells
// that we have to glue back into the light side.
Dark_face dark_f(dark_side.maximal_dimension());
Dark_facet dark_ft;
typename Dark_triangulation::Locate_type lt;
dark_s = dark_side.locate(v->point(), lt, dark_f, dark_ft);
CGAL_assertion( lt != Dark_triangulation::ON_VERTEX
&& lt != Dark_triangulation::OUTSIDE_AFFINE_HULL );
// |ret_s| is the full_cell that we return
Dark_s_handle dark_ret_s = dark_s;
Full_cell_handle ret_s;
typedef Full_cell_set<Dark_s_handle> Dark_full_cells;
Dark_full_cells conflict_zone;
std::back_insert_iterator<Dark_full_cells> dark_out(conflict_zone);
dark_ft = dark_side.compute_conflict_zone(v->point(), dark_s, dark_out);
// Make the dark simplices in the conflict zone searchable
conflict_zone.make_searchable();
// THE FOLLOWING SHOULD MAYBE GO IN TDS.
// Here is the plan:
// 1. Pick any Facet from boundary of the light zone
// 2. Find corresponding Facet on boundary of dark zone
// 3. stitch.
// 1. Build a facet on the boudary of the light zone:
Full_cell_handle light_s = *simps.begin();
Facet light_ft(light_s, light_s->index(v));
// 2. Find corresponding Dark_facet on boundary of the dark zone
Dark_full_cells dark_incident_s;
for( int i = 0; i <= current_dimension(); ++i )
{
if( index_of_covertex(light_ft) == i )
continue;
Dark_v_handle dark_v = light_to_dark[full_cell(light_ft)->vertex(i)];
dark_incident_s.clear();
dark_out = std::back_inserter(dark_incident_s);
dark_side.tds().incident_full_cells(dark_v, dark_out);
for( typename Dark_full_cells::iterator it = dark_incident_s.begin(); it != dark_incident_s.end(); ++it )
{
(*it)->data().count_ += 1;
}
}
for( typename Dark_full_cells::iterator it = dark_incident_s.begin(); it != dark_incident_s.end(); ++it )
{
if( current_dimension() != (*it)->data().count_ )
continue;
if( ! conflict_zone.contains(*it) )
continue;
// We found a full_cell incident to the dark facet corresponding to the light facet |light_ft|
int ft_idx = 0;
while( light_s->has_vertex( (*it)->vertex(ft_idx)->data() ) )
++ft_idx;
dark_ft = Dark_facet(*it, ft_idx);
break;
}
// Pre-3. Now, we are ready to traverse both boundary and do the stiching.
// But first, we create the new full_cells in the light triangulation,
// with as much adjacency information as possible.
// Create new full_cells with vertices
for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
{
Full_cell_handle new_s = new_full_cell();
(*it)->data().light_copy_ = new_s;
for( int i = 0; i <= current_dimension(); ++i )
tds().associate_vertex_with_full_cell(new_s, i, (*it)->vertex(i)->data());
if( dark_ret_s == *it )
ret_s = new_s;
}
// Setup adjacencies inside the hole
for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
{
Full_cell_handle new_s = (*it)->data().light_copy_;
for( int i = 0; i <= current_dimension(); ++i )
if( conflict_zone.contains((*it)->neighbor(i)) )
tds().set_neighbors(new_s, i, (*it)->neighbor(i)->data().light_copy_, (*it)->mirror_index(i));
}
// 3. Stitch
simps.make_searchable();
typedef std::queue<std::pair<Facet, Dark_facet> > Queue;
Queue q;
q.push(std::make_pair(light_ft, dark_ft));
dark_s = dark_side.full_cell(dark_ft);
int dark_i = dark_side.index_of_covertex(dark_ft);
// mark dark_ft as visited:
// TODO try by marking with Dark_v_handle (vertex)
dark_s->neighbor(dark_i)->set_neighbor(dark_s->mirror_index(dark_i), Dark_s_handle());
while( ! q.empty() )
{
std::pair<Facet, Dark_facet> p = q.front();
q.pop();
light_ft = p.first;
dark_ft = p.second;
light_s = full_cell(light_ft);
int light_i = index_of_covertex(light_ft);
dark_s = dark_side.full_cell(dark_ft);
int dark_i = dark_side.index_of_covertex(dark_ft);
Full_cell_handle light_n = light_s->neighbor(light_i);
set_neighbors(dark_s->data().light_copy_, dark_i, light_n, light_s->mirror_index(light_i));
for( int di = 0; di <= current_dimension(); ++di )
{
if( di == dark_i )
continue;
int li = light_s->index(dark_s->vertex(di)->data());
Rotor light_r(light_s, li, light_i);
typename Dark_triangulation::Rotor dark_r(dark_s, di, dark_i);
while (simps.contains(cpp11::get<0>(light_r)->neighbor(cpp11::get<1>(light_r))))
light_r = rotate_rotor(light_r);
while (conflict_zone.contains(cpp11::get<0>(dark_r)->neighbor(cpp11::get<1>(dark_r))))
dark_r = dark_side.rotate_rotor(dark_r);
Dark_s_handle dark_ns = cpp11::get<0>(dark_r);
int dark_ni = cpp11::get<1>(dark_r);
Full_cell_handle light_ns = cpp11::get<0>(light_r);
int light_ni = cpp11::get<1>(light_r);
// mark dark_r as visited:
// TODO try by marking with Dark_v_handle (vertex)
Dark_s_handle outside = dark_ns->neighbor(dark_ni);
Dark_v_handle mirror = dark_ns->mirror_vertex(dark_ni, current_dimension());
int dn = outside->index(mirror);
if( Dark_s_handle() == outside->neighbor(dn) )
continue;
outside->set_neighbor(dn, Dark_s_handle());
q.push(std::make_pair(Facet(light_ns, light_ni), Dark_facet(dark_ns, dark_ni)));
}
}
tds().delete_full_cells(simps.begin(), simps.end());
tds().delete_vertex(v);
return ret_s;
}
template< typename DCTraits, typename TDS >
void
Delaunay_triangulation<DCTraits, TDS>
::remove_decrease_dimension(Vertex_handle v)
{
CGAL_precondition( current_dimension() >= 0 );
tds().remove_decrease_dimension(v, infinite_vertex());
// reset the predicates:
reset_flat_orientation();
if( 1 <= current_dimension() )
{
Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
int inf_v_index = inf_v_cell->index(infinite_vertex());
Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
Orientation o = orientation(s);
CGAL_assertion( ZERO != o );
if( NEGATIVE == o )
reorient_full_cells();
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS
template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Vertex_handle
Delaunay_triangulation<DCTraits, TDS>
::insert(const Point & p, const Locate_type lt, const Face & f, const Facet &, const Full_cell_handle s)
{
switch( lt )
{
case Base::OUTSIDE_AFFINE_HULL:
return insert_outside_affine_hull(p);
break;
case Base::ON_VERTEX:
{
Vertex_handle v = s->vertex(f.index(0));
v->set_point(p);
return v;
break;
}
default:
if( 1 == current_dimension() )
{
if( Base::OUTSIDE_CONVEX_HULL == lt )
{
return insert_outside_convex_hull_1(p, s);
}
Vertex_handle v = tds().insert_in_full_cell(s);
v->set_point(p);
return v;
}
else
return insert_in_conflicting_cell(p, s);
break;
}
}
template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Vertex_handle
Delaunay_triangulation<DCTraits, TDS>
::insert_outside_affine_hull(const Point & p)
{
// we don't use Base::insert_outside_affine_hull(...) because here, we
// also need to reset the side_of_oriented_subsphere functor.
CGAL_precondition( current_dimension() < maximal_dimension() );
Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
// reset the predicates:
reset_flat_orientation();
v->set_point(p);
if( current_dimension() >= 1 )
{
Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
int inf_v_index = inf_v_cell->index(infinite_vertex());
Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
Orientation o = orientation(s);
CGAL_assertion( ZERO != o );
if( NEGATIVE == o )
reorient_full_cells();
}
return v;
}
template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Vertex_handle
Delaunay_triangulation<DCTraits, TDS>
::insert_in_conflicting_cell(const Point & p, const Full_cell_handle s)
{
// for storing conflicting full_cells.
typedef std::vector<Full_cell_handle> Full_cell_h_vector;
CGAL_STATIC_THREAD_LOCAL_VARIABLE(Full_cell_h_vector,cs,0);
cs.clear();
std::back_insert_iterator<Full_cell_h_vector> out(cs);
Facet ft = compute_conflict_zone(p, s, out);
return insert_in_hole(p, cs.begin(), cs.end(), ft);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES
// NOT DOCUMENTED
template< typename DCTraits, typename TDS >
template< typename OrientationPred >
Oriented_side
Delaunay_triangulation<DCTraits, TDS>
::perturbed_side_of_positive_sphere(const Point & p, Full_cell_const_handle s,
const OrientationPred & ori) const
{
CGAL_precondition_msg( ! is_infinite(s), "full cell must be finite");
CGAL_expensive_precondition( POSITIVE == orientation(s) );
typedef std::vector<const Point *> Points;
Points points(current_dimension() + 2);
int i(0);
for( ; i <= current_dimension(); ++i )
points[i] = &(s->vertex(i)->point());
points[i] = &p;
std::sort(points.begin(), points.end(),
internal::Triangulation::Compare_points_for_perturbation<Self>(*this));
typename Points::const_reverse_iterator cut_pt = points.rbegin();
Points test_points;
while( cut_pt != points.rend() )
{
if( &p == *cut_pt )
// because the full_cell "s" is assumed to be positively oriented
return ON_NEGATIVE_SIDE; // we consider |p| to lie outside the sphere
test_points.clear();
typename Base::Point_const_iterator spit = points_begin(s);
int adjust_sign = -1;
for( i = 0; i < current_dimension(); ++i )
{
if( &(*spit) == *cut_pt )
{
++spit;
adjust_sign = (((current_dimension() + i) % 2) == 0) ? -1 : +1;
}
test_points.push_back(&(*spit));
++spit;
}
test_points.push_back(&p);
typedef typename CGAL::Iterator_project<typename Points::iterator,
internal::Triangulation::Point_from_pointer<Self>,
const Point &, const Point *> Point_pointer_iterator;
Orientation ori_value = ori(
Point_pointer_iterator(test_points.begin()),
Point_pointer_iterator(test_points.end()));
if( ZERO != ori_value )
return Oriented_side( - adjust_sign * ori_value );
++cut_pt;
}
CGAL_assertion(false); // we should never reach here
return ON_NEGATIVE_SIDE;
}
template< typename DCTraits, typename TDS >
bool
Delaunay_triangulation<DCTraits, TDS>
::is_in_conflict(const Point & p, Full_cell_const_handle s) const
{
CGAL_precondition( 2 <= current_dimension() );
if( current_dimension() < maximal_dimension() )
{
Conflict_pred_in_subspace c(*this, p, coaffine_orientation_predicate(), side_of_oriented_subsphere_predicate());
return c(s);
}
else
{
Orientation_d ori = geom_traits().orientation_d_object();
Side_of_oriented_sphere_d side = geom_traits().side_of_oriented_sphere_d_object();
Conflict_pred_in_fullspace c(*this, p, ori, side);
return c(s);
}
}
template< typename DCTraits, typename TDS >
template< typename OutputIterator >
typename Delaunay_triangulation<DCTraits, TDS>::Facet
Delaunay_triangulation<DCTraits, TDS>
::compute_conflict_zone(const Point & p, const Full_cell_handle s, OutputIterator out) const
{
CGAL_precondition( 2 <= current_dimension() );
if( current_dimension() < maximal_dimension() )
{
Conflict_pred_in_subspace c(*this, p, coaffine_orientation_predicate(), side_of_oriented_subsphere_predicate());
Conflict_traversal_pred_in_subspace tp(*this, c);
return tds().gather_full_cells(s, tp, out);
}
else
{
Orientation_d ori = geom_traits().orientation_d_object();
Side_of_oriented_sphere_d side = geom_traits().side_of_oriented_sphere_d_object();
Conflict_pred_in_fullspace c(*this, p, ori, side);
Conflict_traversal_pred_in_fullspace tp(*this, c);
return tds().gather_full_cells(s, tp, out);
}
}
} //namespace CGAL
#endif // CGAL_DELAUNAY_COMPLEX_H
|