This file is indexed.

/usr/include/CGAL/ConicCPA2.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// Copyright (c) 2000,2001  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Bernd Gaertner, Sven Schoenherr <sven@inf.ethz.ch>

#ifndef CGAL_CONICCPA2_H
#define CGAL_CONICCPA2_H

// includes
#include <CGAL/Conic_misc.h>
#include <CGAL/kernel_assertions.h>

namespace CGAL {

template < class PT, class DA>
class ConicCPA2;

template < class PT, class DA>
class _Min_ellipse_2_adapterC2__Ellipse;


template < class _PT, class _DA>
class ConicCPA2
{
  public:
    // types
    typedef           _PT             PT;
    typedef           _DA             DA;
    typedef  typename _DA::FT         FT;

  //private:
    //friend class Conic_2< CGAL::Cartesian<FT> >;
    friend class _Min_ellipse_2_adapterC2__Ellipse<PT,DA>;

    DA                  dao;
    FT                  _r, _s, _t, _u, _v, _w;
    Conic_type          type;
    CGAL::Orientation   o;
    bool                empty, trivial, degenerate;
    
    
    void
    set_linear_combination (const FT& a1, const ConicCPA2<PT,DA>& c1,
                            const FT& a2, const ConicCPA2<PT,DA>& c2)
    {
        _r = a1 * c1.r() + a2 * c2.r();
        _s = a1 * c1.s() + a2 * c2.s();
        _t = a1 * c1.t() + a2 * c2.t();
        _u = a1 * c1.u() + a2 * c2.u();
        _v = a1 * c1.v() + a2 * c2.v();
        _w = a1 * c1.w() + a2 * c2.w();
    }
    
    static void set_two_linepairs (const PT& p1,
                                   const PT& p2,
                                   const PT& p3,
                                   const PT& p4,
                                   ConicCPA2<PT,DA>& pair1,
                                   ConicCPA2<PT,DA>& pair2)
    {
        FT x1, y1, x2, y2, x3, y3, x4, y4;
        const DA& da = pair1.da();
        da.get (p1, x1, y1);
        da.get (p2, x2, y2);
        da.get (p3, x3, y3);
        da.get (p4, x4, y4);
    
        CGAL::Orientation side1_24 = (CGAL::Orientation)(CGAL_NTS sign
                                       (-x1*y4+x2*y4
                                        +x4*y1-x2*y1
                                        +x1*y2-x4*y2)),
                         side3_24 = (CGAL::Orientation)(CGAL_NTS sign
                                      (-x3*y4+x2*y4
                                       +x4*y3-x2*y3
                                       +x3*y2-x4*y2));
        if (side1_24 != side3_24) {
            // (counter)clockwise order
            pair1.set_linepair (p1, p2, p3, p4);
            pair2.set_linepair (p2, p3, p4, p1);
        } else {
            CGAL::Orientation side1_32 = (CGAL::Orientation)(CGAL_NTS sign
                                           (-x1*y2+x3*y2
                                            +x2*y1-x3*y1
                                            +x1*y3-x2*y3));
            if (side1_32 != side3_24) {
                // p1, p2 need to be swapped
                pair1.set_linepair (p2, p1, p3, p4);
                pair2.set_linepair (p1, p3, p4, p2);
            } else {
                // p2, p3 need to be swapped
                pair1.set_linepair (p1, p3, p2, p4);
                pair2.set_linepair (p3, p2, p4, p1);
            }
        }
    }
    
    void set_ellipse (const ConicCPA2<PT,DA>& pair1,
                      const ConicCPA2<PT,DA>& pair2)
    {
        FT b = FT(2) * (pair1.r() * pair2.s() + pair1.s() * pair2.r()) -
               pair1.t() * pair2.t();
        set_linear_combination (pair2.det()-b, pair1,
                                pair1.det()-b, pair2);
    }
    
    void set (const ConicCPA2<PT,DA>& c1,
              const ConicCPA2<PT,DA>& c2,
              const PT& p)
    {
        set_linear_combination (c2.evaluate(p), c1, -c1.evaluate(p), c2);
    }
    
    CGAL::Sign vol_derivative (FT dr, FT ds, FT dt,
                              FT du, FT dv, FT dw) const
    {
        FT a1 = FT(4)*r()*ds+FT(4)*dr*s()-FT(2)*t()*dt,
           a0 = FT(4)*r()*s()-t()*t(),
           b1 = (FT(4)*r()*s()-t()*t())*dw+(FT(4)*r()*ds+FT(4)*dr*s()-
                FT(2)*t()*dt)*w()-u()*u()*ds -
                FT(2)*u()*du*s()-v()*v()*dr-FT(2)*v()*dv*r()+u()*v()*dt+
                (u()*dv+du*v())*t(),
           b0 = (FT(4)*r()*s()-t()*t())*w()
          -u()*u()*s()-v()*v()*r()+u()*v()*t(),
           c0 = -FT(2)*a0*b1 + FT(3)*a1*b0;
    
        return CGAL_NTS sign ((int)-CGAL_NTS sign (c0)*o);
    }
    
    double vol_minimum (FT dr, FT ds, FT dt, FT du, FT dv, FT dw) const
    {
        FT a2 = FT(4)*dr*ds-dt*dt,
           a1 = FT(4)*r()*ds+FT(4)*dr*s()-FT(2)*t()*dt,
           a0 = FT(4)*r()*s()-t()*t(),
           b3 = (FT(4)*dr*ds-dt*dt)*dw-du*du*ds-dv*dv*dr+du*dv*dt,
           b2 = (FT(4)*r()*ds+FT(4)*dr*s()-FT(2)*t()*dt)*dw+
                (FT(4)*dr*ds-dt*dt)*w()-FT(2)*u()*du*ds-du*du*s()-
                FT(2)*v()*dv*dr-dv*dv*r()+(u()*dv+du*v())*dt+du*dv*t(),
           b1 = (FT(4)*r()*s()-t()*t())*dw+(FT(4)*r()*ds+FT(4)*dr*s()-
                FT(2)*t()*dt)*w()-u()*u()*ds -
                FT(2)*u()*du*s()-v()*v()*dr-FT(2)*v()*dv*r()+u()*v()*dt+
                (u()*dv+du*v())*t(),
           b0 = (FT(4)*r()*s()-t()*t())*w()
                -u()*u()*s()-v()*v()*r()+u()*v()*t(),
           c3 = -FT(3)*a1*b3 + FT(2)*a2*b2,
           c2 = -FT(6)*a0*b3 - a1*b2 + FT(4)*a2*b1,
           c1 = -FT(4)*a0*b2 + a1*b1 + FT(6)*a2*b0,
           c0 = -FT(2)*a0*b1 + FT(3)*a1*b0;
    
           double roots[3];
           int nr_roots = solve_cubic
                                (CGAL::to_double(c3), CGAL::to_double(c2),
                                 CGAL::to_double(c1), CGAL::to_double(c0),
                                 roots[0], roots[1], roots[2]);
           CGAL_kernel_precondition (nr_roots > 0); // minimum exists
           return best_value (roots, nr_roots,
                                 CGAL::to_double(a2), CGAL::to_double(a1),
                                 CGAL::to_double(a0), CGAL::to_double(b3),
                                 CGAL::to_double(b2), CGAL::to_double(b1),
                                 CGAL::to_double(b0));
    }
    
    

  protected:
    FT det () const
    {
        return FT(4)*s()*r() - t()*t();
    }
    
    void analyse( )
    {
        FT d = det();
        type = (Conic_type)(CGAL_NTS sign(d));
        switch (type) {
        case HYPERBOLA:
            {
                trivial = empty = false;
                FT z_prime = d*w() - u()*u()*s() - v()*v()*r() + u()*v()*t();
                o = (CGAL::Orientation)(CGAL_NTS sign (z_prime));
                degenerate = (o == CGAL::ZERO);
                
                
            }
            break;
        case PARABOLA:
            {
                if (!CGAL_NTS is_zero (r())) {
                    trivial         = false;
                    degenerate      = (t()*u() == FT(2)*r()*v());
                    if (degenerate) {
                        CGAL::Sign discr = (CGAL::Sign)
                                        CGAL_NTS sign(u()*u()-FT(4)*r()*w());
                        switch (discr) {
                            case CGAL::NEGATIVE:
                                empty = true;
                                o = (CGAL::Orientation)(CGAL_NTS sign (w()));
                                break;
                            case CGAL::ZERO:
                                empty = false;
                                o = (CGAL::Orientation)(CGAL_NTS sign (r()));
                                break;
                            case CGAL::POSITIVE:
                                empty = false;
                                o = CGAL::ZERO;
                                break;
                        }
                    } else {
                        empty = false;
                        o = (CGAL::Orientation)(-CGAL_NTS sign (r()));
                    }
                } else if (!CGAL_NTS is_zero (s())) {
                    trivial         = false;
                    degenerate      = (t()*v() == FT(2)*s()*u());
                    if (degenerate) {
                        CGAL::Sign discr = (CGAL::Sign)
                                        CGAL_NTS sign(v()*v()-FT(4)*s()*w());
                        switch (discr) {
                            case CGAL::NEGATIVE:
                                empty = true;
                                o = (CGAL::Orientation)(CGAL_NTS sign (w()));
                                break;
                            case CGAL::ZERO:
                                empty = false;
                                o = (CGAL::Orientation)(CGAL_NTS sign (s()));
                                break;
                            case CGAL::POSITIVE:
                                empty = false;
                                o = CGAL::ZERO;
                                break;
                        }
                    } else {
                        empty = false;
                        o = (CGAL::Orientation)(-CGAL_NTS sign (s()));
                    }
                } else { // r=0, s=0
                    degenerate      = true;
                    bool uv_zero    =    CGAL_NTS is_zero (u())
                                      && CGAL_NTS is_zero (v());
                    trivial         = uv_zero && CGAL_NTS is_zero (w());
                    empty           = uv_zero && !trivial;
                    if (empty)
                        o = (CGAL::Orientation)(CGAL_NTS sign (w()));
                    else if (trivial)
                        o = CGAL::POSITIVE;
                    else
                        o = CGAL::ZERO;
                }
                
                
            }
            break;
        case ELLIPSE:
            {
                trivial = false;
                FT z_prime = d*w() - u()*u()*s() - v()*v()*r() + u()*v()*t();
                if (CGAL_NTS is_positive (r())) {
                    empty = CGAL_NTS sign (z_prime) == CGAL::POSITIVE;
                    empty ? o = CGAL::POSITIVE : o = CGAL::NEGATIVE;
                } else {
                    empty = CGAL_NTS sign (z_prime) == CGAL::NEGATIVE ;
                    empty ? o = CGAL::NEGATIVE : o = CGAL::POSITIVE;
                }
                degenerate = empty || CGAL_NTS is_zero (z_prime);
                
                
            }
            break;
        }
    }
    
    FT evaluate (const PT& p) const
    {
        FT x, y;
        dao.get (p, x, y);
        return r()*x*x + s()*y*y + t()*x*y + u()*x + v()*y + w();
    }
    
    

  public:
    ConicCPA2 ( const DA& da = DA()) : dao( da) { }
    
    ConicCPA2 (FT r, FT s, FT t, FT u, FT v, FT w, const DA& da = DA())
        : dao( da), _r(r), _s(s), _t(t), _u(u), _v(v), _w(w)
    {
        analyse();
    }
    
    const DA&  da() const
    {
        return dao;
    }
    
    FT r() const { return _r;}
    FT s() const { return _s;}
    FT t() const { return _t;}
    FT u() const { return _u;}
    FT v() const { return _v;}
    FT w() const { return _w;}
    
    PT center () const
    {
        CGAL_kernel_precondition (type != PARABOLA);
	// PT p;
	// replaced previous line by following hack (no idea
	// why original version doesn't work)
        typename DA::Point p;
        FT two = FT(2);
        FT div = -det();
        dao.set( p, (two*s()*u() - t()*v()) / div,
                    (two*r()*v() - t()*u()) / div);
        return p;
    }
    
    Conic_type conic_type () const
    {
        return type;
    }
    
    bool is_hyperbola () const
    {
        return (type == HYPERBOLA);
    }
    
    bool is_parabola () const
    {
        return (type == PARABOLA);
    }
    
    bool is_ellipse () const
    {
        return (type == ELLIPSE);
    }

    bool is_circle () const
    {
        return (type == ELLIPSE && (r()==s()) && CGAL_NTS is_zero (t()));
    }
    
    bool is_empty () const
    {
        return empty;
    }
    
    bool is_trivial () const
    {
        return trivial;
    }
    
    bool is_degenerate () const
    {
        return degenerate;
    }
    
    CGAL::Orientation orientation () const
    {
        return o;
    }
    
    CGAL::Oriented_side oriented_side (const PT& p) const
    {
        return (CGAL::Oriented_side)(CGAL_NTS sign (evaluate (p)));
    }
    
    bool has_on_positive_side (const PT& p) const
    {
        return (CGAL_NTS is_positive (evaluate(p)));
    }
    
    bool has_on_negative_side (const PT& p) const
    {
        return (CGAL_NTS is_negative (evaluate(p)));
    }
    
    bool has_on_boundary (const PT& p) const
    {
       return (CGAL_NTS is_zero (evaluate(p)));
    }
    
    bool has_on (const PT& p) const
    {
       return (CGAL_NTS is_zero (evaluate(p)));
    }
    
    
    Convex_side convex_side (const PT& p) const
    {
        switch (o) {
        case CGAL::POSITIVE:
            return (Convex_side)( CGAL_NTS sign (evaluate (p)));
        case CGAL::NEGATIVE:
            return (Convex_side)(-CGAL_NTS sign (evaluate (p)));
        case CGAL::ZERO:
            return (Convex_side)( CGAL_NTS sign (CGAL_NTS abs (evaluate(p))));
        }
        // keeps g++ happy
        return( Convex_side( 0));
    }
    
    bool has_on_convex_side (const PT& p) const
    {
        return (convex_side (p) == ON_CONVEX_SIDE);
    }
    
    bool has_on_nonconvex_side (const PT& p) const
    {
        return (convex_side (p) == ON_NONCONVEX_SIDE);
    }
    
    bool operator == ( const ConicCPA2<_PT,_DA>& c) const
    {
        // find coefficient != 0
        FT  factor1(0);
        if ( ! CGAL_NTS is_zero( r())) factor1 = r(); else
        if ( ! CGAL_NTS is_zero( s())) factor1 = s(); else
        if ( ! CGAL_NTS is_zero( t())) factor1 = t(); else
        if ( ! CGAL_NTS is_zero( u())) factor1 = u(); else
        if ( ! CGAL_NTS is_zero( v())) factor1 = v(); else
        if ( ! CGAL_NTS is_zero( w())) factor1 = w(); else
        CGAL_kernel_assertion_msg( false, "all coefficients zero");
    
        // find coefficient != 0
        FT  factor2(0);
        if ( ! CGAL_NTS is_zero( c.r())) factor2 = c.r(); else
        if ( ! CGAL_NTS is_zero( c.s())) factor2 = c.s(); else
        if ( ! CGAL_NTS is_zero( c.t())) factor2 = c.t(); else
        if ( ! CGAL_NTS is_zero( c.u())) factor2 = c.u(); else
        if ( ! CGAL_NTS is_zero( c.v())) factor2 = c.v(); else
        if ( ! CGAL_NTS is_zero( c.w())) factor2 = c.w(); else
        CGAL_kernel_assertion_msg( false, "all coefficients zero");
    
        return(    ( r()*factor2 == c.r()*factor1)
                && ( s()*factor2 == c.s()*factor1)
                && ( t()*factor2 == c.t()*factor1)
                && ( u()*factor2 == c.u()*factor1)
                && ( v()*factor2 == c.v()*factor1)
                && ( w()*factor2 == c.w()*factor1));
    }
    
    void set (FT r_, FT s_, FT t_, FT u_, FT v_, FT w_)
    {
        _r = r_; _s = s_; _t = t_; _u = u_; _v = v_; _w = w_;
        analyse();
     }
    
    void set_opposite ()
    {
        _r = -r(); _s = -s(); _t = -t(); _u = -u(); _v = -v(); _w = -w();
        o = CGAL::opposite(orientation());
    }
    
  void set_circle (const PT& p1, const PT& p2, const PT& p3) 
  {
     // the circle will have r = s = det, t=0
     FT x1, y1, x2, y2, x3, y3;
     dao.get (p1, x1, y1);
     dao.get (p2, x2, y2);
     dao.get (p3, x3, y3);
    
     // precondition: p1, p2, p3 not collinear
     FT det = -x3*y2+x1*y2+x2*y3-x1*y3+x3*y1-x2*y1;
     CGAL_kernel_precondition (!CGAL_NTS is_zero (det));

     // Cramer's rule
     FT sqr1 = -x1*x1 - y1*y1;
     FT sqr2 = -x2*x2 - y2*y2;
     FT sqr3 = -x3*x3 - y3*y3;

     _u = -sqr3*y2+sqr1*y2+sqr2*y3-sqr1*y3+sqr3*y1-sqr2*y1;
     _v =  -x3*sqr2+x1*sqr2+x2*sqr3-x1*sqr3+x3*sqr1-x2*sqr1;
     _w = -x3*y2*sqr1+x1*y2*sqr3+x2*y3*sqr1-x1*y3*sqr2+x3*y1*sqr2-x2*y1*sqr3;
     _r = det;
     _s = det;
     _t = FT(0);
     
     analyse();
     CGAL_kernel_postcondition(is_circle());
     CGAL_kernel_postcondition(has_on_boundary(p1));
     CGAL_kernel_postcondition(has_on_boundary(p2));
     CGAL_kernel_postcondition(has_on_boundary(p3));
  }

    void set_linepair (const PT& p1, const PT& p2, const PT& p3, const PT& p4)
    {
        FT x1, y1, x2, y2, x3, y3, x4, y4;
        dao.get (p1, x1, y1);
        dao.get (p2, x2, y2);
        dao.get (p3, x3, y3);
        dao.get (p4, x4, y4);
    
        // precondition: p1 != p2, p3 != p4
        CGAL_kernel_precondition
            ( ((x1 != x2) || (y1 != y2)) &&
              ((x3 != x4) || (y3 != y4)) );
    
        FT x2_x1 = x2-x1;
        FT x4_x3 = x4-x3;
        FT y1_y2 = y1-y2;
        FT y3_y4 = y3-y4;
        FT x1y2_y1x2 = x1*y2-y1*x2;
        FT x3y4_y3x4 = x3*y4-y3*x4;
    
        _r = y1_y2 * y3_y4;
        _s = x2_x1 * x4_x3;
        _t = x2_x1 * y3_y4 + y1_y2 * x4_x3;
        _u = x1y2_y1x2 * y3_y4 + y1_y2 * x3y4_y3x4;
        _v = x1y2_y1x2 * x4_x3 + x2_x1 * x3y4_y3x4;
        _w = x1y2_y1x2 * x3y4_y3x4;
    
        analyse();
    }
    
    void set_ellipse (const PT& p1, const PT& p2, const PT& p3)
    {
        FT x1, y1, x2, y2, x3, y3;
        dao.get (p1, x1, y1);
        dao.get (p2, x2, y2);
        dao.get (p3, x3, y3);
    
        // precondition: p1, p2, p3 not collinear
        FT det = -x3*y2+x1*y2+x2*y3-x1*y3+x3*y1-x2*y1;
        CGAL_kernel_precondition (!CGAL_NTS is_zero (det));
    
        FT x1x1 = x1*x1, y1y1 = y1*y1,
           x2x2 = x2*x2, y2y2 = y2*y2,
           x3x3 = x3*x3, y3y3 = y3*y3,  // x_i^2, y_i^2
           two = FT(2);
    
        _r = y1y1 - y1*y2 - y1*y3 +
             y2y2 - y2*y3 + y3y3;
    
        _s = x1x1 - x1*x2 - x1*x3 +
             x2x2 - x2*x3 + x3x3;
    
        _t = -two*x1*y1 + x1*y2 + x1*y3 +
                 y1*x2 -two*x2*y2 + x2*y3 +
                 y1*x3 + y2*x3 -two*x3*y3;
    
        _u = -(y2y2*x3 - x2*y2*y3 - y2*x3*y3 +
                   x1*y3y3 + x2*y3y3 + y1y1*x2 +
                   y1y1*x3 - x1*y1*y2 - y1*x2*y2 -
                   x1*y1*y3 - y1*x3*y3 + x1*y2y2);
    
        _v = -(x2x2*y3 - x2*y2*x3 - x2*x3*y3 +
                   y1*x3x3 + y2*x3x3 + x1x1*y2 +
                   x1x1*y3 - x1*y1*x2 - x1*x2*y2 -
                   x1*y1*x3 - x1*x3*y3 + y1*x2x2);
    
        _w = y1y1*x2*x3 - x1*y1*y2*x3 - y1*x2*y2*x3 +
             y1*y2*x3x3 - x1*y1*x2*y3 + y1*x2x2*y3 -
             y1*x2*x3*y3 + x1*y2y2*x3 + x1x1*y2*y3 -
             x1*x2*y2*y3 - x1*y2*x3*y3 + x1*x2*y3y3;
    
        type = ELLIPSE;
        degenerate = trivial = empty = false;
        o = CGAL::NEGATIVE;
        if (CGAL_NTS is_positive (det)) set_opposite();
    }
    
    void set_ellipse (const PT& p1, const PT& p2,
                      const PT& p3, const PT& p4,
                      CGAL::Orientation _o = POSITIVE)
    {
        ConicCPA2<PT,DA> pair1, pair2;
        set_two_linepairs (p1, p2, p3, p4, pair1, pair2);
        set_ellipse (pair1, pair2);
        analyse();
        if (o != _o) set_opposite();
    }
    
    void set (const PT& p1, const PT& p2, const PT& p3, const PT& p4,
              const PT& p5, CGAL::Orientation _o = POSITIVE)
    {
        ConicCPA2<PT,DA> c1; c1.set_linepair (p1, p2, p3, p4);
        ConicCPA2<PT,DA> c2; c2.set_linepair (p1, p4, p2, p3);
        set_linear_combination (c2.evaluate (p5), c1,
                               -c1.evaluate (p5), c2);
        analyse();
        // precondition: all points distinct <=> conic nontrivial
        CGAL_kernel_precondition (!is_trivial());
        if (o != _o) set_opposite();
    }
    
    

 };

#ifndef CGAL_NO_OSTREAM_INSERT_CONICCPA2
template< class _PT, class _DA>
std::ostream& operator << ( std::ostream& os, const ConicCPA2<_PT,_DA>& c)
{
    return( os << c.r() << ' ' << c.s() << ' ' << c.t() << ' '
               << c.u() << ' ' << c.v() << ' ' << c.w());
}

template< class _PT, class _DA>
std::istream& operator >> ( std::istream& is, ConicCPA2<_PT,_DA>& c)
{
    typedef  typename _DA::FT                  FT;

    FT  r, s, t, u, v, w;
    is >> r >> s >> t >> u >> v >> w;
    c.set( r, s, t, u, v, w);

    return( is);
}
#endif // CGAL_NO_OSTREAM_INSERT_CONICCPA2

} //namespace CGAL

#endif // CGAL_CONICCPA2_H

// ===== EOF ==================================================================