/usr/include/CGAL/Circle_2.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | // Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri
// Sven Schoenherr
#ifndef CGAL_CIRCLE_2_H
#define CGAL_CIRCLE_2_H
#include <CGAL/assertions.h>
#include <boost/type_traits/is_same.hpp>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/Bbox_2.h>
#include <CGAL/Dimension.h>
namespace CGAL {
template <class R_>
class Circle_2 : public R_::Kernel_base::Circle_2
{
typedef typename R_::FT FT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Kernel_base::Circle_2 RCircle_2;
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
typedef Circle_2 Self;
CGAL_static_assertion((boost::is_same<Self, typename R_::Circle_2>::value));
public:
typedef Dimension_tag<2> Ambient_dimension;
typedef Dimension_tag<1> Feature_dimension;
typedef RCircle_2 Rep;
const Rep& rep() const
{
return *this;
}
Rep& rep()
{
return *this;
}
typedef R_ R;
Circle_2() {}
Circle_2(const RCircle_2& t)
: RCircle_2(t) {}
Circle_2(const Point_2 ¢er, const FT &squared_radius,
const Orientation &orientation)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), center, squared_radius, orientation)) {}
Circle_2(const Point_2 ¢er, const FT &squared_radius)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), center, squared_radius, COUNTERCLOCKWISE)) {}
Circle_2(const Point_2 &p, const Point_2 &q, const Point_2 &r)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), p, q, r)) {}
Circle_2(const Point_2 & p, const Point_2 & q,
const Orientation &orientation)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), p, q, orientation)) {}
Circle_2(const Point_2 & p, const Point_2 & q)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), p, q, COUNTERCLOCKWISE)) {}
Circle_2(const Point_2 & p, const Point_2 & q, const FT &bulge)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), p, q, bulge)) {}
Circle_2(const Point_2 & center, const Orientation& orientation)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), center, FT(0), orientation)) {}
Circle_2(const Point_2 & center)
: RCircle_2(typename R::Construct_circle_2()(Return_base_tag(), center, FT(0), COUNTERCLOCKWISE)) {}
typename cpp11::result_of<typename R::Construct_center_2(Circle_2)>::type
center() const
{
return R().construct_center_2_object()(*this);
}
typename cpp11::result_of<typename R::Compute_squared_radius_2(Circle_2)>::type
squared_radius() const
{
return R().compute_squared_radius_2_object()(*this);
}
Orientation orientation() const
{
// This make_certain(), the uncertain orientation of circles, the orientation
// of circles, are all yucky.
return make_certain(R().orientation_2_object()(*this));
}
typename R::Bounded_side
bounded_side(const Point_2 &p) const
{
return R().bounded_side_2_object()(*this, p);
}
typename R::Oriented_side
oriented_side(const Point_2 &p) const
{
return R().oriented_side_2_object()(*this, p);
}
typename R::Boolean
has_on_boundary(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
typename R::Boolean
has_on_bounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
typename R::Boolean
has_on_unbounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
typename R::Boolean
has_on_negative_side(const Point_2 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_unbounded_side(p);
return has_on_bounded_side(p);
}
typename R::Boolean
has_on_positive_side(const Point_2 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_bounded_side(p);
return has_on_unbounded_side(p);
}
typename R::Boolean
is_degenerate() const
{
return CGAL_NTS is_zero(squared_radius());
}
Circle_2
opposite() const
{
//return R().construct_opposite_circle_2_object()(*this);
return Circle_2(center(),
squared_radius(),
CGAL::opposite(orientation()) );
}
Bbox_2
bbox() const
{
return R().construct_bbox_2_object()(*this);
}
typename R::Boolean
operator==(const Circle_2 &c) const
{
return R().equal_2_object()(*this, c);
}
typename R::Boolean
operator!=(const Circle_2 &c) const
{
return !(*this == c);
}
Circle_2 transform(const Aff_transformation_2 &t) const
{
return t.transform(*this);
}
Circle_2 orthogonal_transform(const Aff_transformation_2 &t) const;
};
template <class R_>
Circle_2<R_>
Circle_2<R_>::
orthogonal_transform(const typename R_::Aff_transformation_2& t) const
{
typedef typename R_::RT RT;
typedef typename R_::FT FT;
typedef typename R_::Vector_2 Vector_2;
Vector_2 vec(RT(1), RT(0) ); // unit vector // AF: was FT
vec = vec.transform(t); // transformed
FT sq_scale = vec.squared_length(); // squared scaling factor
return Circle_2(t.transform(center()),
sq_scale * squared_radius(),
t.is_even() ? orientation()
: CGAL::opposite(orientation()));
}
template <class R >
std::ostream&
insert(std::ostream& os, const Circle_2<R>& c)
{
switch(get_mode(os)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "Circle_2(" << c.center() << ", " << c.squared_radius() ;
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
template < class R >
std::ostream &
operator<<(std::ostream &os, const Circle_2<R> &c)
{
return insert(os, c);
}
template <class R >
std::istream&
extract(std::istream& is, Circle_2<R>& c)
{
typename R::Point_2 center;
typename R::FT squared_radius;
int o;
switch(get_mode(is)) {
case IO::ASCII :
is >> center >> iformat(squared_radius) >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
c = Circle_2<R>(center, squared_radius, static_cast<Orientation>(o));
return is;
}
template < class R >
std::istream &
operator>>(std::istream &is, Circle_2<R> &c)
{
return extract(is,c);
}
} //namespace CGAL
#endif // CGAL_CIRCLE_2_H
|