This file is indexed.

/usr/include/CGAL/AABB_tree.h is in libcgal-dev 4.9-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
// Copyright (c) 2008,2011  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Camille Wormser, Pierre Alliez, Stephane Tayeb

#ifndef CGAL_AABB_TREE_H
#define CGAL_AABB_TREE_H

#include <vector>
#include <iterator>
#include <CGAL/internal/AABB_tree/AABB_traversal_traits.h>
#include <CGAL/internal/AABB_tree/AABB_node.h>
#include <CGAL/internal/AABB_tree/AABB_search_tree.h>
#include <CGAL/internal/AABB_tree/Has_nested_type_Shared_data.h>
#include <CGAL/internal/AABB_tree/Primitive_helper.h>
#include <boost/optional.hpp>
#include <boost/lambda/lambda.hpp>

#ifdef CGAL_HAS_THREADS
#include <CGAL/mutex.h>
#endif

/// \file AABB_tree.h

namespace CGAL {

/// \addtogroup PkgAABB_tree
/// @{

	/**
   * Class AABB_tree is a static data structure for efficient
   * intersection and distance computations in 3D. It builds a
   * hierarchy of axis-aligned bounding boxes (an AABB tree) from a set
   * of 3D geometric objects, and can receive intersection and distance
   * queries, provided that the corresponding predicates are
   * implemented in the traits class AABBTraits.
   * An instance of the class `AABBTraits` is internally stored.
   *
   * \sa `AABBTraits`
   * \sa `AABBPrimitive`
   *
   */
	template <typename AABBTraits>
	class AABB_tree
	{
	private:
		// internal KD-tree used to accelerate the distance queries
		typedef AABB_search_tree<AABBTraits> Search_tree;

		// type of the primitives container
		typedef std::vector<typename AABBTraits::Primitive> Primitives;

	public:
    typedef AABBTraits AABB_traits;
    
    /// \name Types
    ///@{

    /// Number type returned by the distance queries.
		typedef typename AABBTraits::FT FT;


    /// Type of 3D point.
		typedef typename AABBTraits::Point_3 Point;

    /// Type of input primitive.
		typedef typename AABBTraits::Primitive Primitive;
		/// Identifier for a primitive in the tree.
		typedef typename Primitive::Id Primitive_id;
		/// Unsigned integral size type.
		typedef typename Primitives::size_type size_type; 
    /// Type of bounding box.
		typedef typename AABBTraits::Bounding_box Bounding_box;
    /// 
		typedef typename AABBTraits::Point_and_primitive_id Point_and_primitive_id;
    /// \deprecated 
		typedef typename AABBTraits::Object_and_primitive_id Object_and_primitive_id;

    /*!
    An alias to `AABBTraits::Intersection_and_primitive_id<Query>`
    */
    #ifdef DOXYGEN_RUNNING
    template<typename Query>
    using Intersection_and_primitive_id = AABBTraits::Intersection_and_primitive_id<Query>;
    #else
    template<typename Query>
    struct Intersection_and_primitive_id {
      typedef typename AABBTraits::template Intersection_and_primitive_id<Query>::Type Type;
    };
    #endif

    
    ///@}

	public:
    /// \name Creation
    ///@{

    /// Constructs an empty tree, and initializes the internally stored traits
    /// class using `traits`.
    AABB_tree(const AABBTraits& traits = AABBTraits());

    /**
     * @brief Builds the datastructure from a sequence of primitives.
     * @param first iterator over first primitive to insert
     * @param beyond past-the-end iterator
     *
     * It is equivalent to constructing an empty tree and calling `insert(first,last,t...)`.
     * For compilers that do not support variadic templates, overloads up to 
     * 5 template arguments are provided.
     * The tree stays empty if the memory allocation is not successful.
     */
    #if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
		template<typename InputIterator,typename ... T>
		AABB_tree(InputIterator first, InputIterator beyond,T&& ...);  
    #else
		template<typename InputIterator>
		AABB_tree(InputIterator first, InputIterator beyond);
    template<typename InputIterator, typename T1>
		AABB_tree(InputIterator first, InputIterator beyond, T1&);
    template<typename InputIterator, typename T1, typename T2>
    AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&);
    template<typename InputIterator, typename T1, typename T2, typename T3>
		AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&,T3&);
    template<typename InputIterator, typename T1, typename T2, typename T3, typename T4>
		AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&);
    template<typename InputIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
		AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&,T5&);
    #endif

    ///@}

		/// \name Operations
		///@{

    /// Equivalent to calling `clear()` and then `insert(first,last,t...)`.
    /// For compilers that do not support variadic templates, overloads up
    /// to 5 template arguments are provided.
    #if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
		template<typename ConstPrimitiveIterator,typename ... T>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T&& ...);
    #else
		template<typename ConstPrimitiveIterator>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
    template<typename ConstPrimitiveIterator, typename T1>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond, T1&);
    template<typename ConstPrimitiveIterator, typename T1, typename T2>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&);
    template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&,T3&);
    template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&,T3&,T4&);
    template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&,T3&,T4&,T5&);
    #endif


    /// Add a sequence of primitives to the set of primitives of the AABB tree.
    /// `%InputIterator` is any iterator and the parameter pack `T` are any types
    /// such that `Primitive` has a constructor with the following signature:
    /// `Primitive(%InputIterator, T...)`. If `Primitive` is a model of the concept
    /// `AABBPrimitiveWithSharedData`, a call to `AABBTraits::set_shared_data(t...)`
    /// is made using the internally stored traits.
    /// For compilers that do not support variadic templates,
    /// overloads up to 5 template arguments are provided.
    #if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
		template<typename InputIterator,typename ... T>
		void insert(InputIterator first, InputIterator beyond,T&& ...);
    #else
		template<typename InputIterator>
		void insert(InputIterator first, InputIterator beyond);
    template<typename InputIterator, typename T1>
		void insert(InputIterator first, InputIterator beyond,T1&);
    template<typename InputIterator, typename T1, typename T2>
		void insert(InputIterator first, InputIterator beyond,T1&, T2&);
    template<typename InputIterator, typename T1, typename T2, typename T3>
		void insert(InputIterator first, InputIterator beyond,T1&,T2&,T3&);
    template<typename InputIterator, typename T1, typename T2, typename T3, typename T4>
		void insert(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&);
    template<typename InputIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
		void insert(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&,T5&);
    #endif

    /// Adds a primitive to the set of primitives of the tree.
    inline void insert(const Primitive& p);

		/// Clears and destroys the tree.
		~AABB_tree()
		{
			clear();
		}
    /// Returns a const reference to the internally stored traits class.
    const AABBTraits& traits() const{
      return m_traits; 
    }
    
		/// Clears the tree.
		void clear()
		{
			// clear AABB tree
      clear_nodes();
			m_primitives.clear();
			clear_search_tree();
		}

		/// Returns the axis-aligned bounding box of the whole tree.
		/// \pre `!empty()`
		const Bounding_box bbox() const { 
			CGAL_precondition(!empty());
			if(size() > 1)
				return root_node()->bbox(); 
			else
				return AABB_traits().compute_bbox_object()(m_primitives.begin(), 
																									 m_primitives.end());
		}
    
    /// Returns the number of primitives in the tree.
		size_type size() const { return m_primitives.size(); }
    
    /// Returns \c true, iff the tree contains no primitive.
		bool empty() const { return m_primitives.empty(); }
		///@}

    /// \name Advanced
    ///@{

    /// After one or more calls to `AABB_tree::insert()` the internal data
    /// structure of the tree must be reconstructed. This procedure
    /// has a complexity of \f$O(n log(n))\f$, where \f$n\f$ is the number of
    /// primitives of the tree.  This procedure is called implicitly
    /// at the first call to a query member function. You can call
    /// AABB_tree::build() explicitly to ensure that the next call to
    /// query functions will not trigger the reconstruction of the
    /// data structure.
    void build();

    ///@}

	private:
    #if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
    template <typename ... T>
    void set_primitive_data_impl(CGAL::Boolean_tag<false>,T ... ){}
    template <typename ... T>
    void set_primitive_data_impl(CGAL::Boolean_tag<true>,T&& ... t)
    {m_traits.set_shared_data(std::forward<T>(t)...);}

    template <typename ... T>
    void set_shared_data(T&& ...t){
      set_primitive_data_impl(CGAL::Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),std::forward<T>(t)...);
    }
    #else
    void set_primitive_data_impl(CGAL::Boolean_tag<false>){}
    void set_primitive_data_impl(CGAL::Boolean_tag<true>)
    {m_traits.set_shared_data();}
    void set_shared_data(){
      set_primitive_data_impl(CGAL::Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>());
    }
    
    template <typename T1>
    void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1){}
    template <typename T1>
    void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1)
    {m_traits.set_shared_data(t1);}
    template <typename T1>
    void set_shared_data(T1& t1){
      set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1);
    }
    
    template <typename T1, typename T2>
    void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2){}
    template <typename T1, typename T2>
    void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2)
    {m_traits.set_shared_data(t1,t2);}
    template <typename T1, typename T2>
    void set_shared_data(const T1& t1,const T2& t2){
      set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2);
    }
    
    template <typename T1, typename T2, typename T3>
    void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2,T3){}
    template <typename T1, typename T2, typename T3>
    void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2,T3& t3)
    {m_traits.set_shared_data(t1,t2,t3);}
    template <typename T1, typename T2, typename T3>
    void set_shared_data(T1& t1,T2& t2,T3& t3){
      set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2,t3);
    }
    
    template <typename T1, typename T2, typename T3, typename T4>
    void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2,T3,T4){}
    template <typename T1, typename T2, typename T3, typename T4>
    void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2,T3& t3,T4& t4)
    {m_traits.set_shared_data(t1,t2,t3,t4);}
    template <typename T1, typename T2, typename T3, typename T4>
    void set_shared_data(T1& t1,T2& t2,T3& t3,T4& t4){
      set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2,t3,t4);
    }
    
    template <typename T1, typename T2, typename T3, typename T4, typename T5>
    void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2,T3,T4,T5){}
    template <typename T1, typename T2, typename T3, typename T4, typename T5>
    void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
    {m_traits.set_shared_data(t1,t2,t3,t4,t5);}
    template <typename T1, typename T2, typename T3, typename T4, typename T5>
    void set_shared_data(T1& t1,T2& t2,T3& t3,T4& t4,T5& t5){
      set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2,t3,t4,t5);
    }
    #endif

		template<typename ConstPointIterator>
		bool accelerate_distance_queries_impl(ConstPointIterator first,
                                          ConstPointIterator beyond) const;
public:

    /// \name Intersection Tests
    ///@{

		/// Returns `true`, iff the query intersects at least one of
		/// the input primitives. \tparam Query must be a type for
		/// which `do_intersect` predicates are
		/// defined in the traits class `AABBTraits`.
		template<typename Query>
		bool do_intersect(const Query& query) const;

    /// Returns the number of primitives intersected by the
    /// query. \tparam Query must be a type for which
    /// `do_intersect` predicates are defined
    /// in the traits class `AABBTraits`.
		template<typename Query>
		size_type number_of_intersected_primitives(const Query& query) const;

    /// Outputs to the iterator the list of all intersected primitives
    /// ids. This function does not compute the intersection points
    /// and is hence faster than the function `all_intersections()`
    /// function below. \tparam Query must be a type for which
    /// `do_intersect` predicates are defined
    /// in the traits class `AABBTraits`.
		template<typename Query, typename OutputIterator>
		OutputIterator all_intersected_primitives(const Query& query, OutputIterator out) const;


    /// Returns the intersected primitive id that is encountered first 
		/// in the tree traversal, iff
    /// the query intersects at least one of the input primitives. No
    /// particular order is guaranteed over the tree traversal, such
    /// that, e.g, the primitive returned is not necessarily the
    /// closest from the source point of a ray query. \tparam Query
    /// must be a type for which
    /// `do_intersect` predicates are defined
    /// in the traits class `AABBTraits`.
		template <typename Query>
		boost::optional<Primitive_id> any_intersected_primitive(const Query& query) const;
    ///@}

    /// \name Intersections
    ///@{

    /// Outputs the list of all intersections, as objects of
    /// `Intersection_and_primitive_id<Query>::%Type`,
    /// between the query and the input data to
    /// the iterator. `do_intersect()`
    /// predicates and intersections must be defined for `Query`
    /// in the `AABBTraits` class.
		template<typename Query, typename OutputIterator>
		OutputIterator all_intersections(const Query& query, OutputIterator out) const;


    /// Returns the intersection that is encountered first 
		/// in the tree traversal. No particular
    /// order is guaranteed over the tree traversal, e.g, the
    /// primitive returned is not necessarily the closest from the
    /// source point of a ray query. Type `Query` must be a type
    /// for which `do_intersect` predicates
    /// and intersections are defined in the traits class AABBTraits.
		template <typename Query>
    #if CGAL_INTERSECTION_VERSION < 2 && !defined(DOXYGEN_RUNNING)
		boost::optional<Object_and_primitive_id> 
    #else
    boost::optional< typename Intersection_and_primitive_id<Query>::Type >
    #endif
    any_intersection(const Query& query) const;



    /// Returns the intersection and  primitive id closest to the source point of the ray
    /// query.
    /// \tparam Ray must be the same as `AABBTraits::Ray_3` and
    /// `do_intersect` predicates and intersections for it must be
    /// defined.
    /// \tparam Skip a functor with an operator
    /// `bool operator()(const Primitive_id& id) const`
    /// that returns `true` in order to skip the primitive.
    /// Defaults to a functor that always returns `false`.
    ///
    /// `AABBTraits` must be a model of `AABBRayIntersectionTraits` to
    /// call this member function.
    template<typename Ray, typename SkipFunctor>
    boost::optional< typename Intersection_and_primitive_id<Ray>::Type >
    first_intersection(const Ray& query, const SkipFunctor& skip) const;

    template<typename Ray>
    boost::optional< typename Intersection_and_primitive_id<Ray>::Type >
    first_intersection(const Ray& query) const
    {
      return first_intersection(query, boost::lambda::constant(false));
    }

    /// Returns the primitive id closest to the source point of the ray
    /// query.
    /// \tparam Ray must be the same as `AABBTraits::Ray_3` and
    /// `do_intersect` predicates and intersections for it must be
    /// defined.
    /// \tparam Skip a functor with an operator
    /// `bool operator()(const Primitive_id& id) const`
    /// that returns `true` in order to skip the primitive.
    /// Defaults to a functor that always returns `false`.
    ///
    /// `AABBTraits` must be a model of `AABBRayIntersectionTraits` to
    /// call this member function.
    template<typename Ray, typename SkipFunctor>
    boost::optional<Primitive_id>
    first_intersected_primitive(const Ray& query, const SkipFunctor& skip) const;

    template<typename Ray>
    boost::optional<Primitive_id>
    first_intersected_primitive(const Ray& query) const
    {
      return first_intersected_primitive(query, boost::lambda::constant(false));
    }
    ///@}

    /// \name Distance Queries
    ///@{

    /// Returns the minimum squared distance between the query point
    /// and all input primitives. Method
    /// `accelerate_distance_queries()` should be called before the
    /// first distance query, so that an internal secondary search
    /// structure is build, for improving performance.
		/// \pre `!empty()`
		FT squared_distance(const Point& query) const;

    /// Returns the point in the union of all input primitives which
    /// is closest to the query. In case there are several closest
    /// points, one arbitrarily chosen closest point is
    /// returned. Method `accelerate_distance_queries()` should be
    /// called before the first distance query, so that an internal
    /// secondary search structure is build, for improving
    /// performance.
		/// \pre `!empty()`
		Point closest_point(const Point& query) const;

    
    /// Returns a `Point_and_primitive_id` which realizes the
    /// smallest distance between the query point and all input
    /// primitives. Method `accelerate_distance_queries()` should be
    /// called before the first distance query, so that an internal
    /// secondary search structure is build, for improving
    /// performance.
		/// \pre `!empty()`
		Point_and_primitive_id closest_point_and_primitive(const Point& query) const;


    ///@}

    /// \name Accelerating the Distance Queries
    /// 
    /// In the following paragraphs, we discuss details of the
    /// implementation of the distance queries. We explain the
    /// internal use of hints, how the user can pass his own hints to
    /// the tree, and how the user can influence the construction of
    /// the secondary data structure used for accelerating distance
    /// queries.
    /// Internally, the distance queries algorithms are initialized
    /// with some hint, which has the same type as the return type of
    /// the query, and this value is refined along a traversal of the
    /// tree, until it is optimal, that is to say until it realizes
    /// the shortest distance to the primitives. In particular, the
    /// exact specification of these internal algorithms is that they
    /// minimize the distance to the object composed of the union of
    /// the primitives and the hint.
    /// It follows that 
    /// - in order to return the exact distance to the set of
    /// primitives, the algorithms need the hint to be exactly on the
    /// primitives;
    /// - if this is not the case, and if the hint happens to be closer
    /// to the query point than any of the primitives, then the hint
    /// is returned.
    ///
    /// This second observation is reasonable, in the sense that
    /// providing a hint to the algorithm means claiming that this
    /// hint belongs to the union of the primitives. These
    /// considerations about the hints being exactly on the primitives
    /// or not are important: in the case where the set of primitives
    /// is a triangle soup, and if some of the primitives are large,
    /// one may want to provide a much better hint than a vertex of
    /// the triangle soup could be. It could be, for example, the
    /// barycenter of one of the triangles. But, except with the use
    /// of an exact constructions kernel, one cannot easily construct
    /// points other than the vertices, that lie exactly on a triangle
    /// soup. Hence, providing a good hint sometimes means not being
    /// able to provide it exactly on the primitives. In rare
    /// occasions, this hint can be returned as the closest point.
    /// In order to accelerate distance queries significantly, the
    /// AABB tree builds an internal KD-tree containing a set of
    /// potential hints, when the method
    /// `accelerate_distance_queries()` is called. This KD-tree
    /// provides very good hints that allow the algorithms to run much
    /// faster than with a default hint (such as the
    /// `reference_point` of the first primitive). The set of
    /// potential hints is a sampling of the union of the primitives,
    /// which is obtained, by default, by calling the method
    /// `reference_point` of each of the primitives. However, such
    /// a sampling with one point per primitive may not be the most
    /// relevant one: if some primitives are very large, it helps
    /// inserting more than one sample on them. Conversely, a sparser
    /// sampling with less than one point per input primitive is
    /// relevant in some cases.
    ///@{

		/// Constructs internal search tree from
		/// a point set taken on the internal primitives
		/// returns `true` iff successful memory allocation
		bool accelerate_distance_queries() const;

    /// Constructs an internal KD-tree containing the specified point
    /// set, to be used as the set of potential hints for accelerating
    /// the distance queries. 
		/// \tparam ConstPointIterator is an iterator with
    /// value type `Point_and_primitive_id`.
		template<typename ConstPointIterator>
		bool accelerate_distance_queries(ConstPointIterator first,
                                     ConstPointIterator beyond) const
    {
      #ifdef CGAL_HAS_THREADS
      //this ensures that this is done once at a time
      CGAL_SCOPED_LOCK(kd_tree_mutex);
      #endif
      clear_search_tree();
      return accelerate_distance_queries_impl(first,beyond);
      
    }
    
    /// Returns the minimum squared distance between the query point
    /// and all input primitives. The internal KD-tree is not used.
		/// \pre `!empty()`
		FT squared_distance(const Point& query, const Point& hint) const;

    /// Returns the point in the union of all input primitives which
    /// is closest to the query. In case there are several closest
    /// points, one arbitrarily chosen closest point is returned. The
    /// internal KD-tree is not used.
		/// \pre `!empty()`
		Point closest_point(const Point& query, const Point& hint) const;
    
    /// Returns a `Point_and_primitive_id` which realizes the
    /// smallest distance between the query point and all input
    /// primitives. The internal KD-tree is not used.
		/// \pre `!empty()`
		Point_and_primitive_id closest_point_and_primitive(const Point& query, const Point_and_primitive_id& hint) const;

    ///@}

	private:
    template<typename AABBTree, typename SkipFunctor>
    friend class AABB_ray_intersection;

    // clear nodes
    void clear_nodes()
    {
			if( size() > 1 ) {
				delete [] m_p_root_node;
			}
			m_p_root_node = NULL;
    }

		// clears internal KD tree
		void clear_search_tree() const
		{
			if ( m_search_tree_constructed )
			{
				CGAL_assertion( m_p_search_tree!=NULL );
				delete m_p_search_tree;
				m_p_search_tree = NULL;
				m_search_tree_constructed = false;
				m_default_search_tree_constructed = false;
                        }
		}

	public:

    /// \internal
		template <class Query, class Traversal_traits>
		void traversal(const Query& query, Traversal_traits& traits) const
		{
			switch(size())
			{
			case 0:
				break;
			case 1:
				traits.intersection(query, singleton_data());
				break;
			default: // if(size() >= 2)
				root_node()->template traversal<Traversal_traits,Query>(query, traits, m_primitives.size());
			}
		}

	private:
		typedef AABB_node<AABBTraits> Node;


	public:
		// returns a point which must be on one primitive
		Point_and_primitive_id any_reference_point_and_id() const
		{
			CGAL_assertion(!empty());
			return Point_and_primitive_id(
        internal::Primitive_helper<AABB_traits>::get_reference_point(m_primitives[0],m_traits), m_primitives[0].id()
      );
		}

	public:
		Point_and_primitive_id best_hint(const Point& query) const
		{
			if(m_search_tree_constructed)
				return m_p_search_tree->closest_point(query);
			else
				return this->any_reference_point_and_id();
		}

	private:
    //Traits class
    AABBTraits m_traits;
		// set of input primitives
		Primitives m_primitives;
		// single root node
		Node* m_p_root_node;
    #ifdef CGAL_HAS_THREADS
    mutable CGAL_MUTEX internal_tree_mutex;//mutex used to protect const calls inducing build()
    mutable CGAL_MUTEX kd_tree_mutex;//mutex used to protect calls to accelerate_distance_queries
    #endif
  
    const Node* root_node() const {
			CGAL_assertion(size() > 1);
      if(m_need_build){
        #ifdef CGAL_HAS_THREADS
        //this ensures that build() will be called once
        CGAL_SCOPED_LOCK(internal_tree_mutex);
        if(m_need_build)
        #endif
          const_cast< AABB_tree<AABBTraits>* >(this)->build(); 
      }
      return m_p_root_node;
    }

		const Primitive& singleton_data() const {
			CGAL_assertion(size() == 1);
			return *m_primitives.begin();
		}

		// search KD-tree
		mutable const Search_tree* m_p_search_tree;
		mutable bool m_search_tree_constructed;
    mutable bool m_default_search_tree_constructed;
    bool m_need_build;

	private:
		// Disabled copy constructor & assignment operator
		typedef AABB_tree<AABBTraits> Self;
		AABB_tree(const Self& src);
		Self& operator=(const Self& src);

	};  // end class AABB_tree

/// @}

  template<typename Tr>
  AABB_tree<Tr>::AABB_tree(const Tr& traits)
    : m_traits(traits)
    , m_primitives()
    , m_p_root_node(NULL)
    , m_p_search_tree(NULL)
    , m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
  {}

  #if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE) 
 	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename ... T>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond,
                           T&& ... t)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond,std::forward<T>(t)...);
 	}
  
	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename ... T>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond,
                             T&& ... t)
	{
    set_shared_data(std::forward<T>(t)...);
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first,std::forward<T>(t)...));
			++first;
		}
    m_need_build = true;
  }
  
  // Clears tree and insert a set of primitives
	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename ... T>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond,
                              T&& ... t)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond,std::forward<T>(t)...);

    build();
	}  
  #else
  //=============constructor======================
	template<typename Tr>
	template<typename ConstPrimitiveIterator>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond);
 	}

	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond,
                           T1& t1)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond,t1);
 	}

	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond,
                           T1& t1,T2& t2)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond,t1,t2);
 	}

	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond,
                           T1& t1,T2& t2,T3& t3)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond,t1,t2,t3);
 	}

	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond,
                           T1& t1,T2& t2,T3& t3,T4& t4)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond,t1,t2,t3,t4);
 	}

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond,
                           T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
		: m_traits()
    , m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond,t1,t2,t3,t4,t5);
 	}
  //=============insert======================
	template<typename Tr>
	template<typename ConstPrimitiveIterator>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond)
	{
    set_shared_data();
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first));
			++first;
		}
    m_need_build = true;
  }

	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond,
                             T1& t1)
	{
    set_shared_data(t1);
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first,t1));
			++first;
		}
    m_need_build = true;
  }
  
	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond,
                             T1& t1, T2& t2)
	{
    set_shared_data(t1,t2);
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first,t1,t2));
			++first;
		}
    m_need_build = true;
  }

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond,
                             T1& t1,T2& t2,T3& t3)
	{
    set_shared_data(t1,t2,t3);
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first,t1,t2,t3));
			++first;
		}
    m_need_build = true;
  }

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond,
                             T1& t1,T2& t2,T3& t3,T4& t4)
	{
    set_shared_data(t1,t2,t3,t4);
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first,t1,t2,t3,t4));
			++first;
		}
    m_need_build = true;
  }

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond,
                             T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
	{
    set_shared_data(t1,t2,t3,t4,t5);
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first,t1,t2,t3,t4,t5));
			++first;
		}
    m_need_build = true;
  }

  //=============rebuild======================
	template<typename Tr>
	template<typename ConstPrimitiveIterator>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond);

    build();
	}

	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond,
                              T1& t1)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond,t1);

    build();
	}
  
	template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond,
                              T1& t1, T2& t2)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond,t1,t2);

    build();
	}

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond,
                              T1& t1,T2& t2,T3& t3)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond,t1,t2,t3);

    build();
	}

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond,
                              T1& t1,T2& t2,T3& t3,T4& t4)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond,t1,t2,t3,t4);

    build();
	}

  template<typename Tr>
	template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond,
                              T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond,t1,t2,t3,t4,t5);

    build();
	}
  #endif

	template<typename Tr>
	void AABB_tree<Tr>::insert(const Primitive& p)
	{
    m_primitives.push_back(p);
    m_need_build = true;
  }

	// Build the data structure, after calls to insert(..)
	template<typename Tr>
	void AABB_tree<Tr>::build()
	{
    clear_nodes();

    if(m_primitives.size() > 1) {

			// allocates tree nodes
			m_p_root_node = new Node[m_primitives.size()-1]();
			if(m_p_root_node == NULL)
			{
				std::cerr << "Unable to allocate memory for AABB tree" << std::endl;
				CGAL_assertion(m_p_root_node != NULL);
				m_primitives.clear();
				clear();
			}

			// constructs the tree
			m_p_root_node->expand(m_primitives.begin(), m_primitives.end(),
														m_primitives.size(), m_traits);
		}

    // In case the users has switched on the accelerated distance query
    // data structure with the default arguments, then it has to be
    // rebuilt.
    if(m_default_search_tree_constructed)
      accelerate_distance_queries();

    m_need_build = false;    
	}


	// constructs the search KD tree from given points
	// to accelerate the distance queries
	template<typename Tr>
	template<typename ConstPointIterator>
	bool AABB_tree<Tr>::accelerate_distance_queries_impl(ConstPointIterator first,
		ConstPointIterator beyond) const
	{
		m_p_search_tree = new Search_tree(first, beyond);
		if(m_p_search_tree != NULL)
		{
			m_search_tree_constructed = true;
			return true;
		}
		else
    {
			std::cerr << "Unable to allocate memory for accelerating distance queries" << std::endl;
			return false;
    }
	}

	// constructs the search KD tree from internal primitives
	template<typename Tr>
	bool AABB_tree<Tr>::accelerate_distance_queries() const
	{
		if(m_primitives.empty()) return true;
    #ifdef CGAL_HAS_THREADS
    //this ensures that this function will be done once
    CGAL_SCOPED_LOCK(kd_tree_mutex);
    #endif

    //we only redo computation only if needed 
    if (!m_need_build && m_default_search_tree_constructed)
      return m_search_tree_constructed;
    
		// iterate over primitives to get reference points on them
		std::vector<Point_and_primitive_id> points;
		points.reserve(m_primitives.size());
		typename Primitives::const_iterator it;
		for(it = m_primitives.begin(); it != m_primitives.end(); ++it)
			points.push_back(
        Point_and_primitive_id(
          internal::Primitive_helper<AABB_traits>::get_reference_point(*it,m_traits), it->id()
        )
      );

    // clears current KD tree
    clear_search_tree();
    m_default_search_tree_constructed = true;
		return accelerate_distance_queries_impl(points.begin(), points.end());
	}

	template<typename Tr>
	template<typename Query>
	bool
		AABB_tree<Tr>::do_intersect(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Do_intersect_traits<AABBTraits, Query> traversal_traits(m_traits);
		this->traversal(query, traversal_traits);
		return traversal_traits.is_intersection_found();
	}

	template<typename Tr>
	template<typename Query>
	typename AABB_tree<Tr>::size_type
		AABB_tree<Tr>::number_of_intersected_primitives(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    using CGAL::internal::AABB_tree::Counting_output_iterator;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
    typedef Counting_output_iterator<Primitive_id, size_type> Counting_iterator;

    size_type counter = 0;
    Counting_iterator out(&counter);

		Listing_primitive_traits<AABBTraits, 
      Query, Counting_iterator> traversal_traits(out,m_traits);
		this->traversal(query, traversal_traits);
		return counter;
	}

	template<typename Tr>
	template<typename Query, typename OutputIterator>
	OutputIterator
		AABB_tree<Tr>::all_intersected_primitives(const Query& query,
		OutputIterator out) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Listing_primitive_traits<AABBTraits, 
      Query, OutputIterator> traversal_traits(out,m_traits);
		this->traversal(query, traversal_traits);
		return out;
	}

	template<typename Tr>
	template<typename Query, typename OutputIterator>
	OutputIterator
		AABB_tree<Tr>::all_intersections(const Query& query,
		OutputIterator out) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Listing_intersection_traits<AABBTraits, 
      Query, OutputIterator> traversal_traits(out,m_traits);
		this->traversal(query, traversal_traits);
		return out;
	}


	template <typename Tr>
	template <typename Query>
  #if CGAL_INTERSECTION_VERSION < 2
	boost::optional<typename AABB_tree<Tr>::Object_and_primitive_id>
  #else
  boost::optional< typename AABB_tree<Tr>::template Intersection_and_primitive_id<Query>::Type >
  #endif
		AABB_tree<Tr>::any_intersection(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		First_intersection_traits<AABBTraits, Query> traversal_traits(m_traits);
		this->traversal(query, traversal_traits);
		return traversal_traits.result();
	}

	template <typename Tr>
	template <typename Query>
	boost::optional<typename AABB_tree<Tr>::Primitive_id>
		AABB_tree<Tr>::any_intersected_primitive(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		First_primitive_traits<AABBTraits, Query> traversal_traits(m_traits);
		this->traversal(query, traversal_traits);
		return traversal_traits.result();
	}

	// closest point with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point
		AABB_tree<Tr>::closest_point(const Point& query,
		const Point& hint) const
	{
		CGAL_precondition(!empty());
		typename Primitive::Id hint_primitive = m_primitives[0].id();
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Projection_traits<AABBTraits> projection_traits(hint,hint_primitive,m_traits);
		this->traversal(query, projection_traits);
		return projection_traits.closest_point();
	}

	// closest point without hint, the search KD-tree is queried for the
	// first closest neighbor point to get a hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point
		AABB_tree<Tr>::closest_point(const Point& query) const
	{
		CGAL_precondition(!empty());
		const Point_and_primitive_id hint = best_hint(query);
		return closest_point(query,hint.first);
	}

	// squared distance with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::FT
		AABB_tree<Tr>::squared_distance(const Point& query,
		const Point& hint) const
	{
		CGAL_precondition(!empty());
		const Point closest = this->closest_point(query, hint);
		return Tr().squared_distance_object()(query, closest);
	}

	// squared distance without user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::FT
		AABB_tree<Tr>::squared_distance(const Point& query) const
	{
		CGAL_precondition(!empty());
		const Point closest = this->closest_point(query);
		return Tr().squared_distance_object()(query, closest);
	}

	// closest point with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point_and_primitive_id
		AABB_tree<Tr>::closest_point_and_primitive(const Point& query) const
	{
		CGAL_precondition(!empty());
		return closest_point_and_primitive(query,best_hint(query));
	}

	// closest point with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point_and_primitive_id
		AABB_tree<Tr>::closest_point_and_primitive(const Point& query,
		const Point_and_primitive_id& hint) const
	{
		CGAL_precondition(!empty());
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Projection_traits<AABBTraits> projection_traits(hint.first,hint.second,m_traits);
		this->traversal(query, projection_traits);
		return projection_traits.closest_point_and_primitive();
	}

} // end namespace CGAL

#include <CGAL/internal/AABB_tree/AABB_ray_intersection.h>


#endif // CGAL_AABB_TREE_H

/***EMACS SETTINGS**    */
/* Local Variables:     */
/* tab-width: 2         */
/* indent-tabs-mode: t  */
/* End:                 */