/usr/include/CGAL/AABB_tree.h is in libcgal-dev 4.9-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 | // Copyright (c) 2008,2011 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Camille Wormser, Pierre Alliez, Stephane Tayeb
#ifndef CGAL_AABB_TREE_H
#define CGAL_AABB_TREE_H
#include <vector>
#include <iterator>
#include <CGAL/internal/AABB_tree/AABB_traversal_traits.h>
#include <CGAL/internal/AABB_tree/AABB_node.h>
#include <CGAL/internal/AABB_tree/AABB_search_tree.h>
#include <CGAL/internal/AABB_tree/Has_nested_type_Shared_data.h>
#include <CGAL/internal/AABB_tree/Primitive_helper.h>
#include <boost/optional.hpp>
#include <boost/lambda/lambda.hpp>
#ifdef CGAL_HAS_THREADS
#include <CGAL/mutex.h>
#endif
/// \file AABB_tree.h
namespace CGAL {
/// \addtogroup PkgAABB_tree
/// @{
/**
* Class AABB_tree is a static data structure for efficient
* intersection and distance computations in 3D. It builds a
* hierarchy of axis-aligned bounding boxes (an AABB tree) from a set
* of 3D geometric objects, and can receive intersection and distance
* queries, provided that the corresponding predicates are
* implemented in the traits class AABBTraits.
* An instance of the class `AABBTraits` is internally stored.
*
* \sa `AABBTraits`
* \sa `AABBPrimitive`
*
*/
template <typename AABBTraits>
class AABB_tree
{
private:
// internal KD-tree used to accelerate the distance queries
typedef AABB_search_tree<AABBTraits> Search_tree;
// type of the primitives container
typedef std::vector<typename AABBTraits::Primitive> Primitives;
public:
typedef AABBTraits AABB_traits;
/// \name Types
///@{
/// Number type returned by the distance queries.
typedef typename AABBTraits::FT FT;
/// Type of 3D point.
typedef typename AABBTraits::Point_3 Point;
/// Type of input primitive.
typedef typename AABBTraits::Primitive Primitive;
/// Identifier for a primitive in the tree.
typedef typename Primitive::Id Primitive_id;
/// Unsigned integral size type.
typedef typename Primitives::size_type size_type;
/// Type of bounding box.
typedef typename AABBTraits::Bounding_box Bounding_box;
///
typedef typename AABBTraits::Point_and_primitive_id Point_and_primitive_id;
/// \deprecated
typedef typename AABBTraits::Object_and_primitive_id Object_and_primitive_id;
/*!
An alias to `AABBTraits::Intersection_and_primitive_id<Query>`
*/
#ifdef DOXYGEN_RUNNING
template<typename Query>
using Intersection_and_primitive_id = AABBTraits::Intersection_and_primitive_id<Query>;
#else
template<typename Query>
struct Intersection_and_primitive_id {
typedef typename AABBTraits::template Intersection_and_primitive_id<Query>::Type Type;
};
#endif
///@}
public:
/// \name Creation
///@{
/// Constructs an empty tree, and initializes the internally stored traits
/// class using `traits`.
AABB_tree(const AABBTraits& traits = AABBTraits());
/**
* @brief Builds the datastructure from a sequence of primitives.
* @param first iterator over first primitive to insert
* @param beyond past-the-end iterator
*
* It is equivalent to constructing an empty tree and calling `insert(first,last,t...)`.
* For compilers that do not support variadic templates, overloads up to
* 5 template arguments are provided.
* The tree stays empty if the memory allocation is not successful.
*/
#if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
template<typename InputIterator,typename ... T>
AABB_tree(InputIterator first, InputIterator beyond,T&& ...);
#else
template<typename InputIterator>
AABB_tree(InputIterator first, InputIterator beyond);
template<typename InputIterator, typename T1>
AABB_tree(InputIterator first, InputIterator beyond, T1&);
template<typename InputIterator, typename T1, typename T2>
AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&);
template<typename InputIterator, typename T1, typename T2, typename T3>
AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&,T3&);
template<typename InputIterator, typename T1, typename T2, typename T3, typename T4>
AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&);
template<typename InputIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
AABB_tree(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&,T5&);
#endif
///@}
/// \name Operations
///@{
/// Equivalent to calling `clear()` and then `insert(first,last,t...)`.
/// For compilers that do not support variadic templates, overloads up
/// to 5 template arguments are provided.
#if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
template<typename ConstPrimitiveIterator,typename ... T>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T&& ...);
#else
template<typename ConstPrimitiveIterator>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
template<typename ConstPrimitiveIterator, typename T1>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond, T1&);
template<typename ConstPrimitiveIterator, typename T1, typename T2>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&);
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&,T3&);
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&,T3&,T4&);
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T1&,T2&,T3&,T4&,T5&);
#endif
/// Add a sequence of primitives to the set of primitives of the AABB tree.
/// `%InputIterator` is any iterator and the parameter pack `T` are any types
/// such that `Primitive` has a constructor with the following signature:
/// `Primitive(%InputIterator, T...)`. If `Primitive` is a model of the concept
/// `AABBPrimitiveWithSharedData`, a call to `AABBTraits::set_shared_data(t...)`
/// is made using the internally stored traits.
/// For compilers that do not support variadic templates,
/// overloads up to 5 template arguments are provided.
#if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
template<typename InputIterator,typename ... T>
void insert(InputIterator first, InputIterator beyond,T&& ...);
#else
template<typename InputIterator>
void insert(InputIterator first, InputIterator beyond);
template<typename InputIterator, typename T1>
void insert(InputIterator first, InputIterator beyond,T1&);
template<typename InputIterator, typename T1, typename T2>
void insert(InputIterator first, InputIterator beyond,T1&, T2&);
template<typename InputIterator, typename T1, typename T2, typename T3>
void insert(InputIterator first, InputIterator beyond,T1&,T2&,T3&);
template<typename InputIterator, typename T1, typename T2, typename T3, typename T4>
void insert(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&);
template<typename InputIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
void insert(InputIterator first, InputIterator beyond,T1&,T2&,T3&,T4&,T5&);
#endif
/// Adds a primitive to the set of primitives of the tree.
inline void insert(const Primitive& p);
/// Clears and destroys the tree.
~AABB_tree()
{
clear();
}
/// Returns a const reference to the internally stored traits class.
const AABBTraits& traits() const{
return m_traits;
}
/// Clears the tree.
void clear()
{
// clear AABB tree
clear_nodes();
m_primitives.clear();
clear_search_tree();
}
/// Returns the axis-aligned bounding box of the whole tree.
/// \pre `!empty()`
const Bounding_box bbox() const {
CGAL_precondition(!empty());
if(size() > 1)
return root_node()->bbox();
else
return AABB_traits().compute_bbox_object()(m_primitives.begin(),
m_primitives.end());
}
/// Returns the number of primitives in the tree.
size_type size() const { return m_primitives.size(); }
/// Returns \c true, iff the tree contains no primitive.
bool empty() const { return m_primitives.empty(); }
///@}
/// \name Advanced
///@{
/// After one or more calls to `AABB_tree::insert()` the internal data
/// structure of the tree must be reconstructed. This procedure
/// has a complexity of \f$O(n log(n))\f$, where \f$n\f$ is the number of
/// primitives of the tree. This procedure is called implicitly
/// at the first call to a query member function. You can call
/// AABB_tree::build() explicitly to ensure that the next call to
/// query functions will not trigger the reconstruction of the
/// data structure.
void build();
///@}
private:
#if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
template <typename ... T>
void set_primitive_data_impl(CGAL::Boolean_tag<false>,T ... ){}
template <typename ... T>
void set_primitive_data_impl(CGAL::Boolean_tag<true>,T&& ... t)
{m_traits.set_shared_data(std::forward<T>(t)...);}
template <typename ... T>
void set_shared_data(T&& ...t){
set_primitive_data_impl(CGAL::Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),std::forward<T>(t)...);
}
#else
void set_primitive_data_impl(CGAL::Boolean_tag<false>){}
void set_primitive_data_impl(CGAL::Boolean_tag<true>)
{m_traits.set_shared_data();}
void set_shared_data(){
set_primitive_data_impl(CGAL::Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>());
}
template <typename T1>
void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1){}
template <typename T1>
void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1)
{m_traits.set_shared_data(t1);}
template <typename T1>
void set_shared_data(T1& t1){
set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1);
}
template <typename T1, typename T2>
void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2){}
template <typename T1, typename T2>
void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2)
{m_traits.set_shared_data(t1,t2);}
template <typename T1, typename T2>
void set_shared_data(const T1& t1,const T2& t2){
set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2);
}
template <typename T1, typename T2, typename T3>
void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2,T3){}
template <typename T1, typename T2, typename T3>
void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2,T3& t3)
{m_traits.set_shared_data(t1,t2,t3);}
template <typename T1, typename T2, typename T3>
void set_shared_data(T1& t1,T2& t2,T3& t3){
set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2,t3);
}
template <typename T1, typename T2, typename T3, typename T4>
void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2,T3,T4){}
template <typename T1, typename T2, typename T3, typename T4>
void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2,T3& t3,T4& t4)
{m_traits.set_shared_data(t1,t2,t3,t4);}
template <typename T1, typename T2, typename T3, typename T4>
void set_shared_data(T1& t1,T2& t2,T3& t3,T4& t4){
set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2,t3,t4);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
void set_primitive_data_impl(CGAL::Boolean_tag<false>,T1,T2,T3,T4,T5){}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
void set_primitive_data_impl(CGAL::Boolean_tag<true>,T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
{m_traits.set_shared_data(t1,t2,t3,t4,t5);}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
void set_shared_data(T1& t1,T2& t2,T3& t3,T4& t4,T5& t5){
set_primitive_data_impl(Boolean_tag<internal::Has_nested_type_Shared_data<Primitive>::value>(),t1,t2,t3,t4,t5);
}
#endif
template<typename ConstPointIterator>
bool accelerate_distance_queries_impl(ConstPointIterator first,
ConstPointIterator beyond) const;
public:
/// \name Intersection Tests
///@{
/// Returns `true`, iff the query intersects at least one of
/// the input primitives. \tparam Query must be a type for
/// which `do_intersect` predicates are
/// defined in the traits class `AABBTraits`.
template<typename Query>
bool do_intersect(const Query& query) const;
/// Returns the number of primitives intersected by the
/// query. \tparam Query must be a type for which
/// `do_intersect` predicates are defined
/// in the traits class `AABBTraits`.
template<typename Query>
size_type number_of_intersected_primitives(const Query& query) const;
/// Outputs to the iterator the list of all intersected primitives
/// ids. This function does not compute the intersection points
/// and is hence faster than the function `all_intersections()`
/// function below. \tparam Query must be a type for which
/// `do_intersect` predicates are defined
/// in the traits class `AABBTraits`.
template<typename Query, typename OutputIterator>
OutputIterator all_intersected_primitives(const Query& query, OutputIterator out) const;
/// Returns the intersected primitive id that is encountered first
/// in the tree traversal, iff
/// the query intersects at least one of the input primitives. No
/// particular order is guaranteed over the tree traversal, such
/// that, e.g, the primitive returned is not necessarily the
/// closest from the source point of a ray query. \tparam Query
/// must be a type for which
/// `do_intersect` predicates are defined
/// in the traits class `AABBTraits`.
template <typename Query>
boost::optional<Primitive_id> any_intersected_primitive(const Query& query) const;
///@}
/// \name Intersections
///@{
/// Outputs the list of all intersections, as objects of
/// `Intersection_and_primitive_id<Query>::%Type`,
/// between the query and the input data to
/// the iterator. `do_intersect()`
/// predicates and intersections must be defined for `Query`
/// in the `AABBTraits` class.
template<typename Query, typename OutputIterator>
OutputIterator all_intersections(const Query& query, OutputIterator out) const;
/// Returns the intersection that is encountered first
/// in the tree traversal. No particular
/// order is guaranteed over the tree traversal, e.g, the
/// primitive returned is not necessarily the closest from the
/// source point of a ray query. Type `Query` must be a type
/// for which `do_intersect` predicates
/// and intersections are defined in the traits class AABBTraits.
template <typename Query>
#if CGAL_INTERSECTION_VERSION < 2 && !defined(DOXYGEN_RUNNING)
boost::optional<Object_and_primitive_id>
#else
boost::optional< typename Intersection_and_primitive_id<Query>::Type >
#endif
any_intersection(const Query& query) const;
/// Returns the intersection and primitive id closest to the source point of the ray
/// query.
/// \tparam Ray must be the same as `AABBTraits::Ray_3` and
/// `do_intersect` predicates and intersections for it must be
/// defined.
/// \tparam Skip a functor with an operator
/// `bool operator()(const Primitive_id& id) const`
/// that returns `true` in order to skip the primitive.
/// Defaults to a functor that always returns `false`.
///
/// `AABBTraits` must be a model of `AABBRayIntersectionTraits` to
/// call this member function.
template<typename Ray, typename SkipFunctor>
boost::optional< typename Intersection_and_primitive_id<Ray>::Type >
first_intersection(const Ray& query, const SkipFunctor& skip) const;
template<typename Ray>
boost::optional< typename Intersection_and_primitive_id<Ray>::Type >
first_intersection(const Ray& query) const
{
return first_intersection(query, boost::lambda::constant(false));
}
/// Returns the primitive id closest to the source point of the ray
/// query.
/// \tparam Ray must be the same as `AABBTraits::Ray_3` and
/// `do_intersect` predicates and intersections for it must be
/// defined.
/// \tparam Skip a functor with an operator
/// `bool operator()(const Primitive_id& id) const`
/// that returns `true` in order to skip the primitive.
/// Defaults to a functor that always returns `false`.
///
/// `AABBTraits` must be a model of `AABBRayIntersectionTraits` to
/// call this member function.
template<typename Ray, typename SkipFunctor>
boost::optional<Primitive_id>
first_intersected_primitive(const Ray& query, const SkipFunctor& skip) const;
template<typename Ray>
boost::optional<Primitive_id>
first_intersected_primitive(const Ray& query) const
{
return first_intersected_primitive(query, boost::lambda::constant(false));
}
///@}
/// \name Distance Queries
///@{
/// Returns the minimum squared distance between the query point
/// and all input primitives. Method
/// `accelerate_distance_queries()` should be called before the
/// first distance query, so that an internal secondary search
/// structure is build, for improving performance.
/// \pre `!empty()`
FT squared_distance(const Point& query) const;
/// Returns the point in the union of all input primitives which
/// is closest to the query. In case there are several closest
/// points, one arbitrarily chosen closest point is
/// returned. Method `accelerate_distance_queries()` should be
/// called before the first distance query, so that an internal
/// secondary search structure is build, for improving
/// performance.
/// \pre `!empty()`
Point closest_point(const Point& query) const;
/// Returns a `Point_and_primitive_id` which realizes the
/// smallest distance between the query point and all input
/// primitives. Method `accelerate_distance_queries()` should be
/// called before the first distance query, so that an internal
/// secondary search structure is build, for improving
/// performance.
/// \pre `!empty()`
Point_and_primitive_id closest_point_and_primitive(const Point& query) const;
///@}
/// \name Accelerating the Distance Queries
///
/// In the following paragraphs, we discuss details of the
/// implementation of the distance queries. We explain the
/// internal use of hints, how the user can pass his own hints to
/// the tree, and how the user can influence the construction of
/// the secondary data structure used for accelerating distance
/// queries.
/// Internally, the distance queries algorithms are initialized
/// with some hint, which has the same type as the return type of
/// the query, and this value is refined along a traversal of the
/// tree, until it is optimal, that is to say until it realizes
/// the shortest distance to the primitives. In particular, the
/// exact specification of these internal algorithms is that they
/// minimize the distance to the object composed of the union of
/// the primitives and the hint.
/// It follows that
/// - in order to return the exact distance to the set of
/// primitives, the algorithms need the hint to be exactly on the
/// primitives;
/// - if this is not the case, and if the hint happens to be closer
/// to the query point than any of the primitives, then the hint
/// is returned.
///
/// This second observation is reasonable, in the sense that
/// providing a hint to the algorithm means claiming that this
/// hint belongs to the union of the primitives. These
/// considerations about the hints being exactly on the primitives
/// or not are important: in the case where the set of primitives
/// is a triangle soup, and if some of the primitives are large,
/// one may want to provide a much better hint than a vertex of
/// the triangle soup could be. It could be, for example, the
/// barycenter of one of the triangles. But, except with the use
/// of an exact constructions kernel, one cannot easily construct
/// points other than the vertices, that lie exactly on a triangle
/// soup. Hence, providing a good hint sometimes means not being
/// able to provide it exactly on the primitives. In rare
/// occasions, this hint can be returned as the closest point.
/// In order to accelerate distance queries significantly, the
/// AABB tree builds an internal KD-tree containing a set of
/// potential hints, when the method
/// `accelerate_distance_queries()` is called. This KD-tree
/// provides very good hints that allow the algorithms to run much
/// faster than with a default hint (such as the
/// `reference_point` of the first primitive). The set of
/// potential hints is a sampling of the union of the primitives,
/// which is obtained, by default, by calling the method
/// `reference_point` of each of the primitives. However, such
/// a sampling with one point per primitive may not be the most
/// relevant one: if some primitives are very large, it helps
/// inserting more than one sample on them. Conversely, a sparser
/// sampling with less than one point per input primitive is
/// relevant in some cases.
///@{
/// Constructs internal search tree from
/// a point set taken on the internal primitives
/// returns `true` iff successful memory allocation
bool accelerate_distance_queries() const;
/// Constructs an internal KD-tree containing the specified point
/// set, to be used as the set of potential hints for accelerating
/// the distance queries.
/// \tparam ConstPointIterator is an iterator with
/// value type `Point_and_primitive_id`.
template<typename ConstPointIterator>
bool accelerate_distance_queries(ConstPointIterator first,
ConstPointIterator beyond) const
{
#ifdef CGAL_HAS_THREADS
//this ensures that this is done once at a time
CGAL_SCOPED_LOCK(kd_tree_mutex);
#endif
clear_search_tree();
return accelerate_distance_queries_impl(first,beyond);
}
/// Returns the minimum squared distance between the query point
/// and all input primitives. The internal KD-tree is not used.
/// \pre `!empty()`
FT squared_distance(const Point& query, const Point& hint) const;
/// Returns the point in the union of all input primitives which
/// is closest to the query. In case there are several closest
/// points, one arbitrarily chosen closest point is returned. The
/// internal KD-tree is not used.
/// \pre `!empty()`
Point closest_point(const Point& query, const Point& hint) const;
/// Returns a `Point_and_primitive_id` which realizes the
/// smallest distance between the query point and all input
/// primitives. The internal KD-tree is not used.
/// \pre `!empty()`
Point_and_primitive_id closest_point_and_primitive(const Point& query, const Point_and_primitive_id& hint) const;
///@}
private:
template<typename AABBTree, typename SkipFunctor>
friend class AABB_ray_intersection;
// clear nodes
void clear_nodes()
{
if( size() > 1 ) {
delete [] m_p_root_node;
}
m_p_root_node = NULL;
}
// clears internal KD tree
void clear_search_tree() const
{
if ( m_search_tree_constructed )
{
CGAL_assertion( m_p_search_tree!=NULL );
delete m_p_search_tree;
m_p_search_tree = NULL;
m_search_tree_constructed = false;
m_default_search_tree_constructed = false;
}
}
public:
/// \internal
template <class Query, class Traversal_traits>
void traversal(const Query& query, Traversal_traits& traits) const
{
switch(size())
{
case 0:
break;
case 1:
traits.intersection(query, singleton_data());
break;
default: // if(size() >= 2)
root_node()->template traversal<Traversal_traits,Query>(query, traits, m_primitives.size());
}
}
private:
typedef AABB_node<AABBTraits> Node;
public:
// returns a point which must be on one primitive
Point_and_primitive_id any_reference_point_and_id() const
{
CGAL_assertion(!empty());
return Point_and_primitive_id(
internal::Primitive_helper<AABB_traits>::get_reference_point(m_primitives[0],m_traits), m_primitives[0].id()
);
}
public:
Point_and_primitive_id best_hint(const Point& query) const
{
if(m_search_tree_constructed)
return m_p_search_tree->closest_point(query);
else
return this->any_reference_point_and_id();
}
private:
//Traits class
AABBTraits m_traits;
// set of input primitives
Primitives m_primitives;
// single root node
Node* m_p_root_node;
#ifdef CGAL_HAS_THREADS
mutable CGAL_MUTEX internal_tree_mutex;//mutex used to protect const calls inducing build()
mutable CGAL_MUTEX kd_tree_mutex;//mutex used to protect calls to accelerate_distance_queries
#endif
const Node* root_node() const {
CGAL_assertion(size() > 1);
if(m_need_build){
#ifdef CGAL_HAS_THREADS
//this ensures that build() will be called once
CGAL_SCOPED_LOCK(internal_tree_mutex);
if(m_need_build)
#endif
const_cast< AABB_tree<AABBTraits>* >(this)->build();
}
return m_p_root_node;
}
const Primitive& singleton_data() const {
CGAL_assertion(size() == 1);
return *m_primitives.begin();
}
// search KD-tree
mutable const Search_tree* m_p_search_tree;
mutable bool m_search_tree_constructed;
mutable bool m_default_search_tree_constructed;
bool m_need_build;
private:
// Disabled copy constructor & assignment operator
typedef AABB_tree<AABBTraits> Self;
AABB_tree(const Self& src);
Self& operator=(const Self& src);
}; // end class AABB_tree
/// @}
template<typename Tr>
AABB_tree<Tr>::AABB_tree(const Tr& traits)
: m_traits(traits)
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{}
#if !defined(CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES) && !defined(CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE)
template<typename Tr>
template<typename ConstPrimitiveIterator, typename ... T>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T&& ... t)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond,std::forward<T>(t)...);
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename ... T>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T&& ... t)
{
set_shared_data(std::forward<T>(t)...);
while(first != beyond)
{
m_primitives.push_back(Primitive(first,std::forward<T>(t)...));
++first;
}
m_need_build = true;
}
// Clears tree and insert a set of primitives
template<typename Tr>
template<typename ConstPrimitiveIterator, typename ... T>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T&& ... t)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond,std::forward<T>(t)...);
build();
}
#else
//=============constructor======================
template<typename Tr>
template<typename ConstPrimitiveIterator>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond);
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond,t1);
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond,t1,t2);
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond,t1,t2,t3);
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3,T4& t4)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond,t1,t2,t3,t4);
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
: m_traits()
, m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond,t1,t2,t3,t4,t5);
}
//=============insert======================
template<typename Tr>
template<typename ConstPrimitiveIterator>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
{
set_shared_data();
while(first != beyond)
{
m_primitives.push_back(Primitive(first));
++first;
}
m_need_build = true;
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1)
{
set_shared_data(t1);
while(first != beyond)
{
m_primitives.push_back(Primitive(first,t1));
++first;
}
m_need_build = true;
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1, T2& t2)
{
set_shared_data(t1,t2);
while(first != beyond)
{
m_primitives.push_back(Primitive(first,t1,t2));
++first;
}
m_need_build = true;
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3)
{
set_shared_data(t1,t2,t3);
while(first != beyond)
{
m_primitives.push_back(Primitive(first,t1,t2,t3));
++first;
}
m_need_build = true;
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3,T4& t4)
{
set_shared_data(t1,t2,t3,t4);
while(first != beyond)
{
m_primitives.push_back(Primitive(first,t1,t2,t3,t4));
++first;
}
m_need_build = true;
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
{
set_shared_data(t1,t2,t3,t4,t5);
while(first != beyond)
{
m_primitives.push_back(Primitive(first,t1,t2,t3,t4,t5));
++first;
}
m_need_build = true;
}
//=============rebuild======================
template<typename Tr>
template<typename ConstPrimitiveIterator>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond);
build();
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond,t1);
build();
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1, T2& t2)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond,t1,t2);
build();
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond,t1,t2,t3);
build();
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3,T4& t4)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond,t1,t2,t3,t4);
build();
}
template<typename Tr>
template<typename ConstPrimitiveIterator, typename T1, typename T2, typename T3, typename T4, typename T5>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond,
T1& t1,T2& t2,T3& t3,T4& t4,T5& t5)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond,t1,t2,t3,t4,t5);
build();
}
#endif
template<typename Tr>
void AABB_tree<Tr>::insert(const Primitive& p)
{
m_primitives.push_back(p);
m_need_build = true;
}
// Build the data structure, after calls to insert(..)
template<typename Tr>
void AABB_tree<Tr>::build()
{
clear_nodes();
if(m_primitives.size() > 1) {
// allocates tree nodes
m_p_root_node = new Node[m_primitives.size()-1]();
if(m_p_root_node == NULL)
{
std::cerr << "Unable to allocate memory for AABB tree" << std::endl;
CGAL_assertion(m_p_root_node != NULL);
m_primitives.clear();
clear();
}
// constructs the tree
m_p_root_node->expand(m_primitives.begin(), m_primitives.end(),
m_primitives.size(), m_traits);
}
// In case the users has switched on the accelerated distance query
// data structure with the default arguments, then it has to be
// rebuilt.
if(m_default_search_tree_constructed)
accelerate_distance_queries();
m_need_build = false;
}
// constructs the search KD tree from given points
// to accelerate the distance queries
template<typename Tr>
template<typename ConstPointIterator>
bool AABB_tree<Tr>::accelerate_distance_queries_impl(ConstPointIterator first,
ConstPointIterator beyond) const
{
m_p_search_tree = new Search_tree(first, beyond);
if(m_p_search_tree != NULL)
{
m_search_tree_constructed = true;
return true;
}
else
{
std::cerr << "Unable to allocate memory for accelerating distance queries" << std::endl;
return false;
}
}
// constructs the search KD tree from internal primitives
template<typename Tr>
bool AABB_tree<Tr>::accelerate_distance_queries() const
{
if(m_primitives.empty()) return true;
#ifdef CGAL_HAS_THREADS
//this ensures that this function will be done once
CGAL_SCOPED_LOCK(kd_tree_mutex);
#endif
//we only redo computation only if needed
if (!m_need_build && m_default_search_tree_constructed)
return m_search_tree_constructed;
// iterate over primitives to get reference points on them
std::vector<Point_and_primitive_id> points;
points.reserve(m_primitives.size());
typename Primitives::const_iterator it;
for(it = m_primitives.begin(); it != m_primitives.end(); ++it)
points.push_back(
Point_and_primitive_id(
internal::Primitive_helper<AABB_traits>::get_reference_point(*it,m_traits), it->id()
)
);
// clears current KD tree
clear_search_tree();
m_default_search_tree_constructed = true;
return accelerate_distance_queries_impl(points.begin(), points.end());
}
template<typename Tr>
template<typename Query>
bool
AABB_tree<Tr>::do_intersect(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Do_intersect_traits<AABBTraits, Query> traversal_traits(m_traits);
this->traversal(query, traversal_traits);
return traversal_traits.is_intersection_found();
}
template<typename Tr>
template<typename Query>
typename AABB_tree<Tr>::size_type
AABB_tree<Tr>::number_of_intersected_primitives(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
using CGAL::internal::AABB_tree::Counting_output_iterator;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
typedef Counting_output_iterator<Primitive_id, size_type> Counting_iterator;
size_type counter = 0;
Counting_iterator out(&counter);
Listing_primitive_traits<AABBTraits,
Query, Counting_iterator> traversal_traits(out,m_traits);
this->traversal(query, traversal_traits);
return counter;
}
template<typename Tr>
template<typename Query, typename OutputIterator>
OutputIterator
AABB_tree<Tr>::all_intersected_primitives(const Query& query,
OutputIterator out) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Listing_primitive_traits<AABBTraits,
Query, OutputIterator> traversal_traits(out,m_traits);
this->traversal(query, traversal_traits);
return out;
}
template<typename Tr>
template<typename Query, typename OutputIterator>
OutputIterator
AABB_tree<Tr>::all_intersections(const Query& query,
OutputIterator out) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Listing_intersection_traits<AABBTraits,
Query, OutputIterator> traversal_traits(out,m_traits);
this->traversal(query, traversal_traits);
return out;
}
template <typename Tr>
template <typename Query>
#if CGAL_INTERSECTION_VERSION < 2
boost::optional<typename AABB_tree<Tr>::Object_and_primitive_id>
#else
boost::optional< typename AABB_tree<Tr>::template Intersection_and_primitive_id<Query>::Type >
#endif
AABB_tree<Tr>::any_intersection(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
First_intersection_traits<AABBTraits, Query> traversal_traits(m_traits);
this->traversal(query, traversal_traits);
return traversal_traits.result();
}
template <typename Tr>
template <typename Query>
boost::optional<typename AABB_tree<Tr>::Primitive_id>
AABB_tree<Tr>::any_intersected_primitive(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
First_primitive_traits<AABBTraits, Query> traversal_traits(m_traits);
this->traversal(query, traversal_traits);
return traversal_traits.result();
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point
AABB_tree<Tr>::closest_point(const Point& query,
const Point& hint) const
{
CGAL_precondition(!empty());
typename Primitive::Id hint_primitive = m_primitives[0].id();
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Projection_traits<AABBTraits> projection_traits(hint,hint_primitive,m_traits);
this->traversal(query, projection_traits);
return projection_traits.closest_point();
}
// closest point without hint, the search KD-tree is queried for the
// first closest neighbor point to get a hint
template<typename Tr>
typename AABB_tree<Tr>::Point
AABB_tree<Tr>::closest_point(const Point& query) const
{
CGAL_precondition(!empty());
const Point_and_primitive_id hint = best_hint(query);
return closest_point(query,hint.first);
}
// squared distance with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::FT
AABB_tree<Tr>::squared_distance(const Point& query,
const Point& hint) const
{
CGAL_precondition(!empty());
const Point closest = this->closest_point(query, hint);
return Tr().squared_distance_object()(query, closest);
}
// squared distance without user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::FT
AABB_tree<Tr>::squared_distance(const Point& query) const
{
CGAL_precondition(!empty());
const Point closest = this->closest_point(query);
return Tr().squared_distance_object()(query, closest);
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point_and_primitive_id
AABB_tree<Tr>::closest_point_and_primitive(const Point& query) const
{
CGAL_precondition(!empty());
return closest_point_and_primitive(query,best_hint(query));
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point_and_primitive_id
AABB_tree<Tr>::closest_point_and_primitive(const Point& query,
const Point_and_primitive_id& hint) const
{
CGAL_precondition(!empty());
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Projection_traits<AABBTraits> projection_traits(hint.first,hint.second,m_traits);
this->traversal(query, projection_traits);
return projection_traits.closest_point_and_primitive();
}
} // end namespace CGAL
#include <CGAL/internal/AABB_tree/AABB_ray_intersection.h>
#endif // CGAL_AABB_TREE_H
/***EMACS SETTINGS** */
/* Local Variables: */
/* tab-width: 2 */
/* indent-tabs-mode: t */
/* End: */
|