This file is indexed.

/usr/include/caffe/util/math_functions.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#ifndef CAFFE_UTIL_MATH_FUNCTIONS_H_
#define CAFFE_UTIL_MATH_FUNCTIONS_H_

#include <stdint.h>
#include <cmath>  // for std::fabs and std::signbit

#include "glog/logging.h"

#include "caffe/common.hpp"
#include "caffe/util/device_alternate.hpp"
#include "caffe/util/mkl_alternate.hpp"

namespace caffe {

// Caffe gemm provides a simpler interface to the gemm functions, with the
// limitation that the data has to be contiguous in memory.
template <typename Dtype>
void caffe_cpu_gemm(const CBLAS_TRANSPOSE TransA,
    const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
    const Dtype alpha, const Dtype* A, const Dtype* B, const Dtype beta,
    Dtype* C);

template <typename Dtype>
void caffe_cpu_gemv(const CBLAS_TRANSPOSE TransA, const int M, const int N,
    const Dtype alpha, const Dtype* A, const Dtype* x, const Dtype beta,
    Dtype* y);

template <typename Dtype>
void caffe_axpy(const int N, const Dtype alpha, const Dtype* X,
    Dtype* Y);

template <typename Dtype>
void caffe_cpu_axpby(const int N, const Dtype alpha, const Dtype* X,
    const Dtype beta, Dtype* Y);

template <typename Dtype>
void caffe_copy(const int N, const Dtype *X, Dtype *Y);

template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype *X);

inline void caffe_memset(const size_t N, const int alpha, void* X) {
  memset(X, alpha, N);  // NOLINT(caffe/alt_fn)
}

template <typename Dtype>
void caffe_add_scalar(const int N, const Dtype alpha, Dtype *X);

template <typename Dtype>
void caffe_scal(const int N, const Dtype alpha, Dtype *X);

template <typename Dtype>
void caffe_sqr(const int N, const Dtype* a, Dtype* y);

template <typename Dtype>
void caffe_add(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_sub(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_mul(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_div(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_powx(const int n, const Dtype* a, const Dtype b, Dtype* y);

unsigned int caffe_rng_rand();

template <typename Dtype>
Dtype caffe_nextafter(const Dtype b);

template <typename Dtype>
void caffe_rng_uniform(const int n, const Dtype a, const Dtype b, Dtype* r);

template <typename Dtype>
void caffe_rng_gaussian(const int n, const Dtype mu, const Dtype sigma,
                        Dtype* r);

template <typename Dtype>
void caffe_rng_bernoulli(const int n, const Dtype p, int* r);

template <typename Dtype>
void caffe_rng_bernoulli(const int n, const Dtype p, unsigned int* r);

template <typename Dtype>
void caffe_exp(const int n, const Dtype* a, Dtype* y);

template <typename Dtype>
void caffe_log(const int n, const Dtype* a, Dtype* y);

template <typename Dtype>
void caffe_abs(const int n, const Dtype* a, Dtype* y);

template <typename Dtype>
Dtype caffe_cpu_dot(const int n, const Dtype* x, const Dtype* y);

template <typename Dtype>
Dtype caffe_cpu_strided_dot(const int n, const Dtype* x, const int incx,
    const Dtype* y, const int incy);

// Returns the sum of the absolute values of the elements of vector x
template <typename Dtype>
Dtype caffe_cpu_asum(const int n, const Dtype* x);

// the branchless, type-safe version from
// http://stackoverflow.com/questions/1903954/is-there-a-standard-sign-function-signum-sgn-in-c-c
template<typename Dtype>
inline int8_t caffe_sign(Dtype val) {
  return (Dtype(0) < val) - (val < Dtype(0));
}

// The following two macros are modifications of DEFINE_VSL_UNARY_FUNC
//   in include/caffe/util/mkl_alternate.hpp authored by @Rowland Depp.
// Please refer to commit 7e8ef25c7 of the boost-eigen branch.
// Git cherry picking that commit caused a conflict hard to resolve and
//   copying that file in convenient for code reviewing.
// So they have to be pasted here temporarily.
#define DEFINE_CAFFE_CPU_UNARY_FUNC(name, operation) \
  template<typename Dtype> \
  void caffe_cpu_##name(const int n, const Dtype* x, Dtype* y) { \
    CHECK_GT(n, 0); CHECK(x); CHECK(y); \
    for (int i = 0; i < n; ++i) { \
      operation; \
    } \
  }

// output is 1 for the positives, 0 for zero, and -1 for the negatives
DEFINE_CAFFE_CPU_UNARY_FUNC(sign, y[i] = caffe_sign<Dtype>(x[i]));

// This returns a nonzero value if the input has its sign bit set.
// The name sngbit is meant to avoid conflicts with std::signbit in the macro.
// The extra parens are needed because CUDA < 6.5 defines signbit as a macro,
// and we don't want that to expand here when CUDA headers are also included.
DEFINE_CAFFE_CPU_UNARY_FUNC(sgnbit, \
    y[i] = static_cast<bool>((std::signbit)(x[i])));

DEFINE_CAFFE_CPU_UNARY_FUNC(fabs, y[i] = std::fabs(x[i]));

template <typename Dtype>
void caffe_cpu_scale(const int n, const Dtype alpha, const Dtype *x, Dtype* y);

#ifndef CPU_ONLY  // GPU

// Decaf gpu gemm provides an interface that is almost the same as the cpu
// gemm function - following the c convention and calling the fortran-order
// gpu code under the hood.
template <typename Dtype>
void caffe_gpu_gemm(const CBLAS_TRANSPOSE TransA,
    const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
    const Dtype alpha, const Dtype* A, const Dtype* B, const Dtype beta,
    Dtype* C);

template <typename Dtype>
void caffe_gpu_gemv(const CBLAS_TRANSPOSE TransA, const int M, const int N,
    const Dtype alpha, const Dtype* A, const Dtype* x, const Dtype beta,
    Dtype* y);

template <typename Dtype>
void caffe_gpu_axpy(const int N, const Dtype alpha, const Dtype* X,
    Dtype* Y);

template <typename Dtype>
void caffe_gpu_axpby(const int N, const Dtype alpha, const Dtype* X,
    const Dtype beta, Dtype* Y);

void caffe_gpu_memcpy(const size_t N, const void *X, void *Y);

template <typename Dtype>
void caffe_gpu_set(const int N, const Dtype alpha, Dtype *X);

inline void caffe_gpu_memset(const size_t N, const int alpha, void* X) {
#ifndef CPU_ONLY
  CUDA_CHECK(cudaMemset(X, alpha, N));  // NOLINT(caffe/alt_fn)
#else
  NO_GPU;
#endif
}

template <typename Dtype>
void caffe_gpu_add_scalar(const int N, const Dtype alpha, Dtype *X);

template <typename Dtype>
void caffe_gpu_scal(const int N, const Dtype alpha, Dtype *X);

#ifndef CPU_ONLY
template <typename Dtype>
void caffe_gpu_scal(const int N, const Dtype alpha, Dtype* X, cudaStream_t str);
#endif

template <typename Dtype>
void caffe_gpu_add(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_gpu_sub(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_gpu_mul(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_gpu_div(const int N, const Dtype* a, const Dtype* b, Dtype* y);

template <typename Dtype>
void caffe_gpu_abs(const int n, const Dtype* a, Dtype* y);

template <typename Dtype>
void caffe_gpu_exp(const int n, const Dtype* a, Dtype* y);

template <typename Dtype>
void caffe_gpu_log(const int n, const Dtype* a, Dtype* y);

template <typename Dtype>
void caffe_gpu_powx(const int n, const Dtype* a, const Dtype b, Dtype* y);

// caffe_gpu_rng_uniform with two arguments generates integers in the range
// [0, UINT_MAX].
void caffe_gpu_rng_uniform(const int n, unsigned int* r);

// caffe_gpu_rng_uniform with four arguments generates floats in the range
// (a, b] (strictly greater than a, less than or equal to b) due to the
// specification of curandGenerateUniform.  With a = 0, b = 1, just calls
// curandGenerateUniform; with other limits will shift and scale the outputs
// appropriately after calling curandGenerateUniform.
template <typename Dtype>
void caffe_gpu_rng_uniform(const int n, const Dtype a, const Dtype b, Dtype* r);

template <typename Dtype>
void caffe_gpu_rng_gaussian(const int n, const Dtype mu, const Dtype sigma,
                            Dtype* r);

template <typename Dtype>
void caffe_gpu_rng_bernoulli(const int n, const Dtype p, int* r);

template <typename Dtype>
void caffe_gpu_dot(const int n, const Dtype* x, const Dtype* y, Dtype* out);

template <typename Dtype>
void caffe_gpu_asum(const int n, const Dtype* x, Dtype* y);

template<typename Dtype>
void caffe_gpu_sign(const int n, const Dtype* x, Dtype* y);

template<typename Dtype>
void caffe_gpu_sgnbit(const int n, const Dtype* x, Dtype* y);

template <typename Dtype>
void caffe_gpu_fabs(const int n, const Dtype* x, Dtype* y);

template <typename Dtype>
void caffe_gpu_scale(const int n, const Dtype alpha, const Dtype *x, Dtype* y);

#define DEFINE_AND_INSTANTIATE_GPU_UNARY_FUNC(name, operation) \
template<typename Dtype> \
__global__ void name##_kernel(const int n, const Dtype* x, Dtype* y) { \
  CUDA_KERNEL_LOOP(index, n) { \
    operation; \
  } \
} \
template <> \
void caffe_gpu_##name<float>(const int n, const float* x, float* y) { \
  /* NOLINT_NEXT_LINE(whitespace/operators) */ \
  name##_kernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS>>>( \
      n, x, y); \
} \
template <> \
void caffe_gpu_##name<double>(const int n, const double* x, double* y) { \
  /* NOLINT_NEXT_LINE(whitespace/operators) */ \
  name##_kernel<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS>>>( \
      n, x, y); \
}

#endif  // !CPU_ONLY

}  // namespace caffe

#endif  // CAFFE_UTIL_MATH_FUNCTIONS_H_