This file is indexed.

/usr/include/caffe/util/cudnn.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#ifndef CAFFE_UTIL_CUDNN_H_
#define CAFFE_UTIL_CUDNN_H_
#ifdef USE_CUDNN

#include <cudnn.h>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"

#define CUDNN_VERSION_MIN(major, minor, patch) \
    (CUDNN_VERSION >= (major * 1000 + minor * 100 + patch))

#define CUDNN_CHECK(condition) \
  do { \
    cudnnStatus_t status = condition; \
    CHECK_EQ(status, CUDNN_STATUS_SUCCESS) << " "\
      << cudnnGetErrorString(status); \
  } while (0)

inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
  }
  return "Unknown cudnn status";
}

namespace caffe {

namespace cudnn {

template <typename Dtype> class dataType;
template<> class dataType<float>  {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
  static float oneval, zeroval;
  static const void *one, *zero;
};
template<> class dataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
  static double oneval, zeroval;
  static const void *one, *zero;
};

template <typename Dtype>
inline void createTensor4dDesc(cudnnTensorDescriptor_t* desc) {
  CUDNN_CHECK(cudnnCreateTensorDescriptor(desc));
}

template <typename Dtype>
inline void setTensor4dDesc(cudnnTensorDescriptor_t* desc,
    int n, int c, int h, int w,
    int stride_n, int stride_c, int stride_h, int stride_w) {
  CUDNN_CHECK(cudnnSetTensor4dDescriptorEx(*desc, dataType<Dtype>::type,
        n, c, h, w, stride_n, stride_c, stride_h, stride_w));
}

template <typename Dtype>
inline void setTensor4dDesc(cudnnTensorDescriptor_t* desc,
    int n, int c, int h, int w) {
  const int stride_w = 1;
  const int stride_h = w * stride_w;
  const int stride_c = h * stride_h;
  const int stride_n = c * stride_c;
  setTensor4dDesc<Dtype>(desc, n, c, h, w,
                         stride_n, stride_c, stride_h, stride_w);
}

template <typename Dtype>
inline void createFilterDesc(cudnnFilterDescriptor_t* desc,
    int n, int c, int h, int w) {
  CUDNN_CHECK(cudnnCreateFilterDescriptor(desc));
#if CUDNN_VERSION_MIN(5, 0, 0)
  CUDNN_CHECK(cudnnSetFilter4dDescriptor(*desc, dataType<Dtype>::type,
      CUDNN_TENSOR_NCHW, n, c, h, w));
#else
  CUDNN_CHECK(cudnnSetFilter4dDescriptor_v4(*desc, dataType<Dtype>::type,
      CUDNN_TENSOR_NCHW, n, c, h, w));
#endif
}

template <typename Dtype>
inline void createConvolutionDesc(cudnnConvolutionDescriptor_t* conv) {
  CUDNN_CHECK(cudnnCreateConvolutionDescriptor(conv));
}

template <typename Dtype>
inline void setConvolutionDesc(cudnnConvolutionDescriptor_t* conv,
    cudnnTensorDescriptor_t bottom, cudnnFilterDescriptor_t filter,
    int pad_h, int pad_w, int stride_h, int stride_w) {
  CUDNN_CHECK(cudnnSetConvolution2dDescriptor(*conv,
      pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION));
}

template <typename Dtype>
inline void createPoolingDesc(cudnnPoolingDescriptor_t* pool_desc,
    PoolingParameter_PoolMethod poolmethod, cudnnPoolingMode_t* mode,
    int h, int w, int pad_h, int pad_w, int stride_h, int stride_w) {
  switch (poolmethod) {
  case PoolingParameter_PoolMethod_MAX:
    *mode = CUDNN_POOLING_MAX;
    break;
  case PoolingParameter_PoolMethod_AVE:
    *mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
    break;
  default:
    LOG(FATAL) << "Unknown pooling method.";
  }
  CUDNN_CHECK(cudnnCreatePoolingDescriptor(pool_desc));
#if CUDNN_VERSION_MIN(5, 0, 0)
  CUDNN_CHECK(cudnnSetPooling2dDescriptor(*pool_desc, *mode,
        CUDNN_PROPAGATE_NAN, h, w, pad_h, pad_w, stride_h, stride_w));
#else
  CUDNN_CHECK(cudnnSetPooling2dDescriptor_v4(*pool_desc, *mode,
        CUDNN_PROPAGATE_NAN, h, w, pad_h, pad_w, stride_h, stride_w));
#endif
}

template <typename Dtype>
inline void createActivationDescriptor(cudnnActivationDescriptor_t* activ_desc,
    cudnnActivationMode_t mode) {
  CUDNN_CHECK(cudnnCreateActivationDescriptor(activ_desc));
  CUDNN_CHECK(cudnnSetActivationDescriptor(*activ_desc, mode,
                                           CUDNN_PROPAGATE_NAN, Dtype(0)));
}

}  // namespace cudnn

}  // namespace caffe

#endif  // USE_CUDNN
#endif  // CAFFE_UTIL_CUDNN_H_