This file is indexed.

/usr/include/caffe/parallel.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#ifndef CAFFE_PARALLEL_HPP_
#define CAFFE_PARALLEL_HPP_

#ifdef USE_NCCL

#include <boost/thread.hpp>

#include <string>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/internal_thread.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/solver.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/blocking_queue.hpp"
#include "caffe/util/nccl.hpp"

namespace caffe {

// Represents a net parameters. Once a net is created, its parameter buffers can
// be replaced by ones from Params, to allow parallelization. Params ensures
// parameters are allocated in one consecutive array.
template<typename Dtype>
class Params {
 public:
  explicit Params(shared_ptr<Solver<Dtype> > root_solver);
  virtual ~Params() {
  }

  inline size_t size() const {
    return size_;
  }
  inline Dtype* data() const {
    return data_;
  }
  inline Dtype* diff() const {
    return diff_;
  }

 protected:
  const size_t size_;           // Size of buffers
  Dtype* data_;                 // Network parameters
  Dtype* diff_;                 // Gradient

DISABLE_COPY_AND_ASSIGN(Params);
};

// Params stored in GPU memory.
template<typename Dtype>
class GPUParams : public Params<Dtype> {
 public:
  GPUParams(shared_ptr<Solver<Dtype> > root_solver, int device);
  virtual ~GPUParams();

  void Configure(Solver<Dtype>* solver) const;

 protected:
  using Params<Dtype>::size_;
  using Params<Dtype>::data_;
  using Params<Dtype>::diff_;
};

template<typename Dtype>
class NCCL : public GPUParams<Dtype>,
             public Solver<Dtype>::Callback,
             public Net<Dtype>::Callback {
 public:
  /**
   * Single process version.
   */
  explicit NCCL(shared_ptr<Solver<Dtype> > solver);
  /**
   * In multi-process settings, first create a NCCL id (new_uid), then
   * pass it to each process to create connected instances.
   */
  NCCL(shared_ptr<Solver<Dtype> > solver, const string& uid);
  ~NCCL();

  boost::barrier* barrier();
  void set_barrier(boost::barrier* value);

  /**
   * In single process settings, create instances without uids and
   * call this to connect them.
   */
  static void InitSingleProcess(vector<NCCL<Dtype>*>* nccls);

  static string new_uid();

  /**
   * Broadcast weights from rank 0 other solvers.
   */
  void Broadcast();

  /**
   * Single process multi-GPU.
   */
  void Run(const vector<int>& gpus, const char* restore);

 protected:
  void Init();
  void on_start() {}
  void run(int layer);  // Net callback
  void on_gradients_ready();

  ncclComm_t comm_;
  cudaStream_t stream_;

  shared_ptr<Solver<Dtype> > solver_;
  // Should not be necessary, https://github.com/NVIDIA/nccl/issues/37
  boost::barrier* barrier_;
  using Params<Dtype>::size_;
  using Params<Dtype>::data_;
  using Params<Dtype>::diff_;
};

}  // namespace caffe

#endif  // USE_NCCL
#endif  // header