This file is indexed.

/usr/include/caffe/layers/recurrent_layer.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#ifndef CAFFE_RECURRENT_LAYER_HPP_
#define CAFFE_RECURRENT_LAYER_HPP_

#include <string>
#include <utility>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/format.hpp"

namespace caffe {

template <typename Dtype> class RecurrentLayer;

/**
 * @brief An abstract class for implementing recurrent behavior inside of an
 *        unrolled network.  This Layer type cannot be instantiated -- instead,
 *        you should use one of its implementations which defines the recurrent
 *        architecture, such as RNNLayer or LSTMLayer.
 */
template <typename Dtype>
class RecurrentLayer : public Layer<Dtype> {
 public:
  explicit RecurrentLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reset();

  virtual inline const char* type() const { return "Recurrent"; }
  virtual inline int MinBottomBlobs() const {
    int min_bottoms = 2;
    if (this->layer_param_.recurrent_param().expose_hidden()) {
      vector<string> inputs;
      this->RecurrentInputBlobNames(&inputs);
      min_bottoms += inputs.size();
    }
    return min_bottoms;
  }
  virtual inline int MaxBottomBlobs() const { return MinBottomBlobs() + 1; }
  virtual inline int ExactNumTopBlobs() const {
    int num_tops = 1;
    if (this->layer_param_.recurrent_param().expose_hidden()) {
      vector<string> outputs;
      this->RecurrentOutputBlobNames(&outputs);
      num_tops += outputs.size();
    }
    return num_tops;
  }

  virtual inline bool AllowForceBackward(const int bottom_index) const {
    // Can't propagate to sequence continuation indicators.
    return bottom_index != 1;
  }

 protected:
  /**
   * @brief Fills net_param with the recurrent network architecture.  Subclasses
   *        should define this -- see RNNLayer and LSTMLayer for examples.
   */
  virtual void FillUnrolledNet(NetParameter* net_param) const = 0;

  /**
   * @brief Fills names with the names of the 0th timestep recurrent input
   *        Blob&s.  Subclasses should define this -- see RNNLayer and LSTMLayer
   *        for examples.
   */
  virtual void RecurrentInputBlobNames(vector<string>* names) const = 0;

  /**
   * @brief Fills shapes with the shapes of the recurrent input Blob&s.
   *        Subclasses should define this -- see RNNLayer and LSTMLayer
   *        for examples.
   */
  virtual void RecurrentInputShapes(vector<BlobShape>* shapes) const = 0;

  /**
   * @brief Fills names with the names of the Tth timestep recurrent output
   *        Blob&s.  Subclasses should define this -- see RNNLayer and LSTMLayer
   *        for examples.
   */
  virtual void RecurrentOutputBlobNames(vector<string>* names) const = 0;

  /**
   * @brief Fills names with the names of the output blobs, concatenated across
   *        all timesteps.  Should return a name for each top Blob.
   *        Subclasses should define this -- see RNNLayer and LSTMLayer for
   *        examples.
   */
  virtual void OutputBlobNames(vector<string>* names) const = 0;

  /**
   * @param bottom input Blob vector (length 2-3)
   *
   *   -# @f$ (T \times N \times ...) @f$
   *      the time-varying input @f$ x @f$.  After the first two axes, whose
   *      dimensions must correspond to the number of timesteps @f$ T @f$ and
   *      the number of independent streams @f$ N @f$, respectively, its
   *      dimensions may be arbitrary.  Note that the ordering of dimensions --
   *      @f$ (T \times N \times ...) @f$, rather than
   *      @f$ (N \times T \times ...) @f$ -- means that the @f$ N @f$
   *      independent input streams must be "interleaved".
   *
   *   -# @f$ (T \times N) @f$
   *      the sequence continuation indicators @f$ \delta @f$.
   *      These inputs should be binary (0 or 1) indicators, where
   *      @f$ \delta_{t,n} = 0 @f$ means that timestep @f$ t @f$ of stream
   *      @f$ n @f$ is the beginning of a new sequence, and hence the previous
   *      hidden state @f$ h_{t-1} @f$ is multiplied by @f$ \delta_t = 0 @f$
   *      and has no effect on the cell's output at timestep @f$ t @f$, and
   *      a value of @f$ \delta_{t,n} = 1 @f$ means that timestep @f$ t @f$ of
   *      stream @f$ n @f$ is a continuation from the previous timestep
   *      @f$ t-1 @f$, and the previous hidden state @f$ h_{t-1} @f$ affects the
   *      updated hidden state and output.
   *
   *   -# @f$ (N \times ...) @f$ (optional)
   *      the static (non-time-varying) input @f$ x_{static} @f$.
   *      After the first axis, whose dimension must be the number of
   *      independent streams, its dimensions may be arbitrary.
   *      This is mathematically equivalent to using a time-varying input of
   *      @f$ x'_t = [x_t; x_{static}] @f$ -- i.e., tiling the static input
   *      across the @f$ T @f$ timesteps and concatenating with the time-varying
   *      input.  Note that if this input is used, all timesteps in a single
   *      batch within a particular one of the @f$ N @f$ streams must share the
   *      same static input, even if the sequence continuation indicators
   *      suggest that difference sequences are ending and beginning within a
   *      single batch.  This may require padding and/or truncation for uniform
   *      length.
   *
   * @param top output Blob vector (length 1)
   *   -# @f$ (T \times N \times D) @f$
   *      the time-varying output @f$ y @f$, where @f$ D @f$ is
   *      <code>recurrent_param.num_output()</code>.
   *      Refer to documentation for particular RecurrentLayer implementations
   *      (such as RNNLayer and LSTMLayer) for the definition of @f$ y @f$.
   */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  /// @brief A Net to implement the Recurrent functionality.
  shared_ptr<Net<Dtype> > unrolled_net_;

  /// @brief The number of independent streams to process simultaneously.
  int N_;

  /**
   * @brief The number of timesteps in the layer's input, and the number of
   *        timesteps over which to backpropagate through time.
   */
  int T_;

  /// @brief Whether the layer has a "static" input copied across all timesteps.
  bool static_input_;

  /**
   * @brief The last layer to run in the network. (Any later layers are losses
   *        added to force the recurrent net to do backprop.)
   */
  int last_layer_index_;

  /**
   * @brief Whether the layer's hidden state at the first and last timesteps
   *        are layer inputs and outputs, respectively.
   */
  bool expose_hidden_;

  vector<Blob<Dtype>* > recur_input_blobs_;
  vector<Blob<Dtype>* > recur_output_blobs_;
  vector<Blob<Dtype>* > output_blobs_;
  Blob<Dtype>* x_input_blob_;
  Blob<Dtype>* x_static_input_blob_;
  Blob<Dtype>* cont_input_blob_;
};

}  // namespace caffe

#endif  // CAFFE_RECURRENT_LAYER_HPP_