This file is indexed.

/usr/include/caffe/layers/absval_layer.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#ifndef CAFFE_ABSVAL_LAYER_HPP_
#define CAFFE_ABSVAL_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/neuron_layer.hpp"

namespace caffe {

/**
 * @brief Computes @f$ y = |x| @f$
 *
 * @param bottom input Blob vector (length 1)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the inputs @f$ x @f$
 * @param top output Blob vector (length 1)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the computed outputs @f$ y = |x| @f$
 */
template <typename Dtype>
class AbsValLayer : public NeuronLayer<Dtype> {
 public:
  explicit AbsValLayer(const LayerParameter& param)
      : NeuronLayer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "AbsVal"; }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 1; }

 protected:
  /// @copydoc AbsValLayer
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the absolute value inputs.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (N \times C \times H \times W) @f$
   *      containing error gradients @f$ \frac{\partial E}{\partial y} @f$
   *      with respect to computed outputs @f$ y @f$
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x @f$; Backward fills their diff with
   *      gradients @f$
   *        \frac{\partial E}{\partial x} =
   *            \mathrm{sign}(x) \frac{\partial E}{\partial y}
   *      @f$ if propagate_down[0]
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};

}  // namespace caffe

#endif  // CAFFE_ABSVAL_LAYER_HPP_