/usr/include/caffe/layer.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | #ifndef CAFFE_LAYER_H_
#define CAFFE_LAYER_H_
#include <algorithm>
#include <string>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer_factory.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/math_functions.hpp"
/**
Forward declare boost::thread instead of including boost/thread.hpp
to avoid a boost/NVCC issues (#1009, #1010) on OSX.
*/
namespace boost { class mutex; }
namespace caffe {
/**
* @brief An interface for the units of computation which can be composed into a
* Net.
*
* Layer%s must implement a Forward function, in which they take their input
* (bottom) Blob%s (if any) and compute their output Blob%s (if any).
* They may also implement a Backward function, in which they compute the error
* gradients with respect to their input Blob%s, given the error gradients with
* their output Blob%s.
*/
template <typename Dtype>
class Layer {
public:
/**
* You should not implement your own constructor. Any set up code should go
* to SetUp(), where the dimensions of the bottom blobs are provided to the
* layer.
*/
explicit Layer(const LayerParameter& param)
: layer_param_(param) {
// Set phase and copy blobs (if there are any).
phase_ = param.phase();
if (layer_param_.blobs_size() > 0) {
blobs_.resize(layer_param_.blobs_size());
for (int i = 0; i < layer_param_.blobs_size(); ++i) {
blobs_[i].reset(new Blob<Dtype>());
blobs_[i]->FromProto(layer_param_.blobs(i));
}
}
}
virtual ~Layer() {}
/**
* @brief Implements common layer setup functionality.
*
* @param bottom the preshaped input blobs
* @param top
* the allocated but unshaped output blobs, to be shaped by Reshape
*
* Checks that the number of bottom and top blobs is correct.
* Calls LayerSetUp to do special layer setup for individual layer types,
* followed by Reshape to set up sizes of top blobs and internal buffers.
* Sets up the loss weight multiplier blobs for any non-zero loss weights.
* This method may not be overridden.
*/
void SetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
CheckBlobCounts(bottom, top);
LayerSetUp(bottom, top);
Reshape(bottom, top);
SetLossWeights(top);
}
/**
* @brief Does layer-specific setup: your layer should implement this function
* as well as Reshape.
*
* @param bottom
* the preshaped input blobs, whose data fields store the input data for
* this layer
* @param top
* the allocated but unshaped output blobs
*
* This method should do one-time layer specific setup. This includes reading
* and processing relevent parameters from the <code>layer_param_</code>.
* Setting up the shapes of top blobs and internal buffers should be done in
* <code>Reshape</code>, which will be called before the forward pass to
* adjust the top blob sizes.
*/
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
/**
* @brief Adjust the shapes of top blobs and internal buffers to accommodate
* the shapes of the bottom blobs.
*
* @param bottom the input blobs, with the requested input shapes
* @param top the top blobs, which should be reshaped as needed
*
* This method should reshape top blobs as needed according to the shapes
* of the bottom (input) blobs, as well as reshaping any internal buffers
* and making any other necessary adjustments so that the layer can
* accommodate the bottom blobs.
*/
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) = 0;
/**
* @brief Given the bottom blobs, compute the top blobs and the loss.
*
* @param bottom
* the input blobs, whose data fields store the input data for this layer
* @param top
* the preshaped output blobs, whose data fields will store this layers'
* outputs
* \return The total loss from the layer.
*
* The Forward wrapper calls the relevant device wrapper function
* (Forward_cpu or Forward_gpu) to compute the top blob values given the
* bottom blobs. If the layer has any non-zero loss_weights, the wrapper
* then computes and returns the loss.
*
* Your layer should implement Forward_cpu and (optionally) Forward_gpu.
*/
inline Dtype Forward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Given the top blob error gradients, compute the bottom blob error
* gradients.
*
* @param top
* the output blobs, whose diff fields store the gradient of the error
* with respect to themselves
* @param propagate_down
* a vector with equal length to bottom, with each index indicating
* whether to propagate the error gradients down to the bottom blob at
* the corresponding index
* @param bottom
* the input blobs, whose diff fields will store the gradient of the error
* with respect to themselves after Backward is run
*
* The Backward wrapper calls the relevant device wrapper function
* (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the
* top blob diffs.
*
* Your layer should implement Backward_cpu and (optionally) Backward_gpu.
*/
inline void Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom);
/**
* @brief Returns the vector of learnable parameter blobs.
*/
vector<shared_ptr<Blob<Dtype> > >& blobs() {
return blobs_;
}
/**
* @brief Returns the layer parameter.
*/
const LayerParameter& layer_param() const { return layer_param_; }
/**
* @brief Writes the layer parameter to a protocol buffer
*/
virtual void ToProto(LayerParameter* param, bool write_diff = false);
/**
* @brief Returns the scalar loss associated with a top blob at a given index.
*/
inline Dtype loss(const int top_index) const {
return (loss_.size() > top_index) ? loss_[top_index] : Dtype(0);
}
/**
* @brief Sets the loss associated with a top blob at a given index.
*/
inline void set_loss(const int top_index, const Dtype value) {
if (loss_.size() <= top_index) {
loss_.resize(top_index + 1, Dtype(0));
}
loss_[top_index] = value;
}
/**
* @brief Returns the layer type.
*/
virtual inline const char* type() const { return ""; }
/**
* @brief Returns the exact number of bottom blobs required by the layer,
* or -1 if no exact number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some exact number of bottom blobs.
*/
virtual inline int ExactNumBottomBlobs() const { return -1; }
/**
* @brief Returns the minimum number of bottom blobs required by the layer,
* or -1 if no minimum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some minimum number of bottom blobs.
*/
virtual inline int MinBottomBlobs() const { return -1; }
/**
* @brief Returns the maximum number of bottom blobs required by the layer,
* or -1 if no maximum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some maximum number of bottom blobs.
*/
virtual inline int MaxBottomBlobs() const { return -1; }
/**
* @brief Returns the exact number of top blobs required by the layer,
* or -1 if no exact number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some exact number of top blobs.
*/
virtual inline int ExactNumTopBlobs() const { return -1; }
/**
* @brief Returns the minimum number of top blobs required by the layer,
* or -1 if no minimum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some minimum number of top blobs.
*/
virtual inline int MinTopBlobs() const { return -1; }
/**
* @brief Returns the maximum number of top blobs required by the layer,
* or -1 if no maximum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some maximum number of top blobs.
*/
virtual inline int MaxTopBlobs() const { return -1; }
/**
* @brief Returns true if the layer requires an equal number of bottom and
* top blobs.
*
* This method should be overridden to return true if your layer expects an
* equal number of bottom and top blobs.
*/
virtual inline bool EqualNumBottomTopBlobs() const { return false; }
/**
* @brief Return whether "anonymous" top blobs are created automatically
* by the layer.
*
* If this method returns true, Net::Init will create enough "anonymous" top
* blobs to fulfill the requirement specified by ExactNumTopBlobs() or
* MinTopBlobs().
*/
virtual inline bool AutoTopBlobs() const { return false; }
/**
* @brief Return whether to allow force_backward for a given bottom blob
* index.
*
* If AllowForceBackward(i) == false, we will ignore the force_backward
* setting and backpropagate to blob i only if it needs gradient information
* (as is done when force_backward == false).
*/
virtual inline bool AllowForceBackward(const int bottom_index) const {
return true;
}
/**
* @brief Specifies whether the layer should compute gradients w.r.t. a
* parameter at a particular index given by param_id.
*
* You can safely ignore false values and always compute gradients
* for all parameters, but possibly with wasteful computation.
*/
inline bool param_propagate_down(const int param_id) {
return (param_propagate_down_.size() > param_id) ?
param_propagate_down_[param_id] : false;
}
/**
* @brief Sets whether the layer should compute gradients w.r.t. a
* parameter at a particular index given by param_id.
*/
inline void set_param_propagate_down(const int param_id, const bool value) {
if (param_propagate_down_.size() <= param_id) {
param_propagate_down_.resize(param_id + 1, true);
}
param_propagate_down_[param_id] = value;
}
protected:
/** The protobuf that stores the layer parameters */
LayerParameter layer_param_;
/** The phase: TRAIN or TEST */
Phase phase_;
/** The vector that stores the learnable parameters as a set of blobs. */
vector<shared_ptr<Blob<Dtype> > > blobs_;
/** Vector indicating whether to compute the diff of each param blob. */
vector<bool> param_propagate_down_;
/** The vector that indicates whether each top blob has a non-zero weight in
* the objective function. */
vector<Dtype> loss_;
/** @brief Using the CPU device, compute the layer output. */
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) = 0;
/**
* @brief Using the GPU device, compute the layer output.
* Fall back to Forward_cpu() if unavailable.
*/
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// LOG(WARNING) << "Using CPU code as backup.";
return Forward_cpu(bottom, top);
}
/**
* @brief Using the CPU device, compute the gradients for any parameters and
* for the bottom blobs if propagate_down is true.
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) = 0;
/**
* @brief Using the GPU device, compute the gradients for any parameters and
* for the bottom blobs if propagate_down is true.
* Fall back to Backward_cpu() if unavailable.
*/
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
// LOG(WARNING) << "Using CPU code as backup.";
Backward_cpu(top, propagate_down, bottom);
}
/**
* Called by the parent Layer's SetUp to check that the number of bottom
* and top Blobs provided as input match the expected numbers specified by
* the {ExactNum,Min,Max}{Bottom,Top}Blobs() functions.
*/
virtual void CheckBlobCounts(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
if (ExactNumBottomBlobs() >= 0) {
CHECK_EQ(ExactNumBottomBlobs(), bottom.size())
<< type() << " Layer takes " << ExactNumBottomBlobs()
<< " bottom blob(s) as input.";
}
if (MinBottomBlobs() >= 0) {
CHECK_LE(MinBottomBlobs(), bottom.size())
<< type() << " Layer takes at least " << MinBottomBlobs()
<< " bottom blob(s) as input.";
}
if (MaxBottomBlobs() >= 0) {
CHECK_GE(MaxBottomBlobs(), bottom.size())
<< type() << " Layer takes at most " << MaxBottomBlobs()
<< " bottom blob(s) as input.";
}
if (ExactNumTopBlobs() >= 0) {
CHECK_EQ(ExactNumTopBlobs(), top.size())
<< type() << " Layer produces " << ExactNumTopBlobs()
<< " top blob(s) as output.";
}
if (MinTopBlobs() >= 0) {
CHECK_LE(MinTopBlobs(), top.size())
<< type() << " Layer produces at least " << MinTopBlobs()
<< " top blob(s) as output.";
}
if (MaxTopBlobs() >= 0) {
CHECK_GE(MaxTopBlobs(), top.size())
<< type() << " Layer produces at most " << MaxTopBlobs()
<< " top blob(s) as output.";
}
if (EqualNumBottomTopBlobs()) {
CHECK_EQ(bottom.size(), top.size())
<< type() << " Layer produces one top blob as output for each "
<< "bottom blob input.";
}
}
/**
* Called by SetUp to initialize the weights associated with any top blobs in
* the loss function. Store non-zero loss weights in the diff blob.
*/
inline void SetLossWeights(const vector<Blob<Dtype>*>& top) {
const int num_loss_weights = layer_param_.loss_weight_size();
if (num_loss_weights) {
CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be "
"unspecified or specified once per top blob.";
for (int top_id = 0; top_id < top.size(); ++top_id) {
const Dtype loss_weight = layer_param_.loss_weight(top_id);
if (loss_weight == Dtype(0)) { continue; }
this->set_loss(top_id, loss_weight);
const int count = top[top_id]->count();
Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff();
caffe_set(count, loss_weight, loss_multiplier);
}
}
}
private:
DISABLE_COPY_AND_ASSIGN(Layer);
}; // class Layer
// Forward and backward wrappers. You should implement the cpu and
// gpu specific implementations instead, and should not change these
// functions.
template <typename Dtype>
inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
Dtype loss = 0;
Reshape(bottom, top);
switch (Caffe::mode()) {
case Caffe::CPU:
Forward_cpu(bottom, top);
for (int top_id = 0; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->cpu_data();
const Dtype* loss_weights = top[top_id]->cpu_diff();
loss += caffe_cpu_dot(count, data, loss_weights);
}
break;
case Caffe::GPU:
Forward_gpu(bottom, top);
#ifndef CPU_ONLY
for (int top_id = 0; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->gpu_data();
const Dtype* loss_weights = top[top_id]->gpu_diff();
Dtype blob_loss = 0;
caffe_gpu_dot(count, data, loss_weights, &blob_loss);
loss += blob_loss;
}
#endif
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
return loss;
}
template <typename Dtype>
inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
switch (Caffe::mode()) {
case Caffe::CPU:
Backward_cpu(top, propagate_down, bottom);
break;
case Caffe::GPU:
Backward_gpu(top, propagate_down, bottom);
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
// Serialize LayerParameter to protocol buffer
template <typename Dtype>
void Layer<Dtype>::ToProto(LayerParameter* param, bool write_diff) {
param->Clear();
param->CopyFrom(layer_param_);
param->clear_blobs();
for (int i = 0; i < blobs_.size(); ++i) {
blobs_[i]->ToProto(param->add_blobs(), write_diff);
}
}
} // namespace caffe
#endif // CAFFE_LAYER_H_
|