/usr/include/caffe/common.hpp is in libcaffe-cpu-dev 1.0.0~rc4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | #ifndef CAFFE_COMMON_HPP_
#define CAFFE_COMMON_HPP_
#include <boost/shared_ptr.hpp>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <climits>
#include <cmath>
#include <fstream> // NOLINT(readability/streams)
#include <iostream> // NOLINT(readability/streams)
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility> // pair
#include <vector>
#include "caffe/util/device_alternate.hpp"
// Convert macro to string
#define STRINGIFY(m) #m
#define AS_STRING(m) STRINGIFY(m)
// gflags 2.1 issue: namespace google was changed to gflags without warning.
// Luckily we will be able to use GFLAGS_GFLAGS_H_ to detect if it is version
// 2.1. If yes, we will add a temporary solution to redirect the namespace.
// TODO(Yangqing): Once gflags solves the problem in a more elegant way, let's
// remove the following hack.
#ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
#endif // GFLAGS_GFLAGS_H_
// Disable the copy and assignment operator for a class.
#define DISABLE_COPY_AND_ASSIGN(classname) \
private:\
classname(const classname&);\
classname& operator=(const classname&)
// Instantiate a class with float and double specifications.
#define INSTANTIATE_CLASS(classname) \
char gInstantiationGuard##classname; \
template class classname<float>; \
template class classname<double>
#define INSTANTIATE_LAYER_GPU_FORWARD(classname) \
template void classname<float>::Forward_gpu( \
const std::vector<Blob<float>*>& bottom, \
const std::vector<Blob<float>*>& top); \
template void classname<double>::Forward_gpu( \
const std::vector<Blob<double>*>& bottom, \
const std::vector<Blob<double>*>& top);
#define INSTANTIATE_LAYER_GPU_BACKWARD(classname) \
template void classname<float>::Backward_gpu( \
const std::vector<Blob<float>*>& top, \
const std::vector<bool>& propagate_down, \
const std::vector<Blob<float>*>& bottom); \
template void classname<double>::Backward_gpu( \
const std::vector<Blob<double>*>& top, \
const std::vector<bool>& propagate_down, \
const std::vector<Blob<double>*>& bottom)
#define INSTANTIATE_LAYER_GPU_FUNCS(classname) \
INSTANTIATE_LAYER_GPU_FORWARD(classname); \
INSTANTIATE_LAYER_GPU_BACKWARD(classname)
// A simple macro to mark codes that are not implemented, so that when the code
// is executed we will see a fatal log.
#define NOT_IMPLEMENTED LOG(FATAL) << "Not Implemented Yet"
// See PR #1236
namespace cv { class Mat; }
namespace caffe {
// We will use the boost shared_ptr instead of the new C++11 one mainly
// because cuda does not work (at least now) well with C++11 features.
using boost::shared_ptr;
// Common functions and classes from std that caffe often uses.
using std::fstream;
using std::ios;
using std::isnan;
using std::isinf;
using std::iterator;
using std::make_pair;
using std::map;
using std::ostringstream;
using std::pair;
using std::set;
using std::string;
using std::stringstream;
using std::vector;
// A global initialization function that you should call in your main function.
// Currently it initializes google flags and google logging.
void GlobalInit(int* pargc, char*** pargv);
// A singleton class to hold common caffe stuff, such as the handler that
// caffe is going to use for cublas, curand, etc.
class Caffe {
public:
~Caffe();
// Thread local context for Caffe. Moved to common.cpp instead of
// including boost/thread.hpp to avoid a boost/NVCC issues (#1009, #1010)
// on OSX. Also fails on Linux with CUDA 7.0.18.
static Caffe& Get();
enum Brew { CPU, GPU };
// This random number generator facade hides boost and CUDA rng
// implementation from one another (for cross-platform compatibility).
class RNG {
public:
RNG();
explicit RNG(unsigned int seed);
explicit RNG(const RNG&);
RNG& operator=(const RNG&);
void* generator();
private:
class Generator;
shared_ptr<Generator> generator_;
};
// Getters for boost rng, curand, and cublas handles
inline static RNG& rng_stream() {
if (!Get().random_generator_) {
Get().random_generator_.reset(new RNG());
}
return *(Get().random_generator_);
}
#ifndef CPU_ONLY
inline static cublasHandle_t cublas_handle() { return Get().cublas_handle_; }
inline static curandGenerator_t curand_generator() {
return Get().curand_generator_;
}
#endif
// Returns the mode: running on CPU or GPU.
inline static Brew mode() { return Get().mode_; }
// The setters for the variables
// Sets the mode. It is recommended that you don't change the mode halfway
// into the program since that may cause allocation of pinned memory being
// freed in a non-pinned way, which may cause problems - I haven't verified
// it personally but better to note it here in the header file.
inline static void set_mode(Brew mode) { Get().mode_ = mode; }
// Sets the random seed of both boost and curand
static void set_random_seed(const unsigned int seed);
// Sets the device. Since we have cublas and curand stuff, set device also
// requires us to reset those values.
static void SetDevice(const int device_id);
// Prints the current GPU status.
static void DeviceQuery();
// Check if specified device is available
static bool CheckDevice(const int device_id);
// Search from start_id to the highest possible device ordinal,
// return the ordinal of the first available device.
static int FindDevice(const int start_id = 0);
// Parallel training
inline static int solver_count() { return Get().solver_count_; }
inline static void set_solver_count(int val) { Get().solver_count_ = val; }
inline static int solver_rank() { return Get().solver_rank_; }
inline static void set_solver_rank(int val) { Get().solver_rank_ = val; }
inline static bool multiprocess() { return Get().multiprocess_; }
inline static void set_multiprocess(bool val) { Get().multiprocess_ = val; }
inline static bool root_solver() { return Get().solver_rank_ == 0; }
protected:
#ifndef CPU_ONLY
cublasHandle_t cublas_handle_;
curandGenerator_t curand_generator_;
#endif
shared_ptr<RNG> random_generator_;
Brew mode_;
// Parallel training
int solver_count_;
int solver_rank_;
bool multiprocess_;
private:
// The private constructor to avoid duplicate instantiation.
Caffe();
DISABLE_COPY_AND_ASSIGN(Caffe);
};
} // namespace caffe
#endif // CAFFE_COMMON_HPP_
|