/usr/include/boost/lambda/if.hpp is in libboost1.62-dev 1.62.0+dfsg-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | // Boost Lambda Library -- if.hpp ------------------------------------------
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2000 Gary Powell (powellg@amazon.com)
// Copyright (C) 2001-2002 Joel de Guzman
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
// --------------------------------------------------------------------------
#if !defined(BOOST_LAMBDA_IF_HPP)
#define BOOST_LAMBDA_IF_HPP
#include "boost/lambda/core.hpp"
// Arithmetic type promotion needed for if_then_else_return
#include "boost/lambda/detail/operator_actions.hpp"
#include "boost/lambda/detail/operator_return_type_traits.hpp"
namespace boost {
namespace lambda {
// -- if control construct actions ----------------------
class ifthen_action {};
class ifthenelse_action {};
class ifthenelsereturn_action {};
// Specialization for if_then.
template<class Args>
class
lambda_functor_base<ifthen_action, Args> {
public:
Args args;
template <class T> struct sig { typedef void type; };
public:
explicit lambda_functor_base(const Args& a) : args(a) {}
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const {
if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
}
};
// If Then
template <class Arg1, class Arg2>
inline const
lambda_functor<
lambda_functor_base<
ifthen_action,
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
>
>
if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
return
lambda_functor_base<
ifthen_action,
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
>
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) );
}
// Specialization for if_then_else.
template<class Args>
class
lambda_functor_base<ifthenelse_action, Args> {
public:
Args args;
template <class T> struct sig { typedef void type; };
public:
explicit lambda_functor_base(const Args& a) : args(a) {}
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const {
if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
else
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
}
};
// If then else
template <class Arg1, class Arg2, class Arg3>
inline const
lambda_functor<
lambda_functor_base<
ifthenelse_action,
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
>
>
if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
const lambda_functor<Arg3>& a3) {
return
lambda_functor_base<
ifthenelse_action,
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
>
(tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
(a1, a2, a3) );
}
// Our version of operator?:()
template <class Arg1, class Arg2, class Arg3>
inline const
lambda_functor<
lambda_functor_base<
other_action<ifthenelsereturn_action>,
tuple<lambda_functor<Arg1>,
typename const_copy_argument<Arg2>::type,
typename const_copy_argument<Arg3>::type>
>
>
if_then_else_return(const lambda_functor<Arg1>& a1,
const Arg2 & a2,
const Arg3 & a3) {
return
lambda_functor_base<
other_action<ifthenelsereturn_action>,
tuple<lambda_functor<Arg1>,
typename const_copy_argument<Arg2>::type,
typename const_copy_argument<Arg3>::type>
> ( tuple<lambda_functor<Arg1>,
typename const_copy_argument<Arg2>::type,
typename const_copy_argument<Arg3>::type> (a1, a2, a3) );
}
namespace detail {
// return type specialization for conditional expression begins -----------
// start reading below and move upwards
// PHASE 6:1
// check if A is conbertible to B and B to A
template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B>
struct return_type_2_ifthenelsereturn;
// if A can be converted to B and vice versa -> ambiguous
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> {
typedef
detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
// ambiguous type in conditional expression
};
// if A can be converted to B and vice versa and are of same type
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> {
typedef A type;
};
// A can be converted to B
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> {
typedef B type;
};
// B can be converted to A
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> {
typedef A type;
};
// neither can be converted. Then we drop the potential references, and
// try again
template<class A, class B>
struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> {
// it is safe to add const, since the result will be an rvalue and thus
// const anyway. The const are needed eg. if the types
// are 'const int*' and 'void *'. The remaining type should be 'const void*'
typedef const typename boost::remove_reference<A>::type plainA;
typedef const typename boost::remove_reference<B>::type plainB;
// TODO: Add support for volatile ?
typedef typename
return_type_2_ifthenelsereturn<
2,
boost::is_convertible<plainA,plainB>::value,
boost::is_convertible<plainB,plainA>::value,
boost::is_same<plainA,plainB>::value,
plainA,
plainB>::type type;
};
// PHASE 6:2
template<class A, class B>
struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> {
typedef
detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
// types_do_not_match_in_conditional_expression
};
// PHASE 5: now we know that types are not arithmetic.
template<class A, class B>
struct non_numeric_types {
typedef typename
return_type_2_ifthenelsereturn<
1, // phase 1
is_convertible<A,B>::value,
is_convertible<B,A>::value,
is_same<A,B>::value,
A,
B>::type type;
};
// PHASE 4 :
// the base case covers arithmetic types with differing promote codes
// use the type deduction of arithmetic_actions
template<int CodeA, int CodeB, class A, class B>
struct arithmetic_or_not {
typedef typename
return_type_2<arithmetic_action<plus_action>, A, B>::type type;
// plus_action is just a random pick, has to be a concrete instance
};
// this case covers the case of artihmetic types with the same promote codes.
// non numeric deduction is used since e.g. integral promotion is not
// performed with operator ?:
template<int CodeA, class A, class B>
struct arithmetic_or_not<CodeA, CodeA, A, B> {
typedef typename non_numeric_types<A, B>::type type;
};
// if either A or B has promote code -1 it is not an arithmetic type
template<class A, class B>
struct arithmetic_or_not <-1, -1, A, B> {
typedef typename non_numeric_types<A, B>::type type;
};
template<int CodeB, class A, class B>
struct arithmetic_or_not <-1, CodeB, A, B> {
typedef typename non_numeric_types<A, B>::type type;
};
template<int CodeA, class A, class B>
struct arithmetic_or_not <CodeA, -1, A, B> {
typedef typename non_numeric_types<A, B>::type type;
};
// PHASE 3 : Are the types same?
// No, check if they are arithmetic or not
template <class A, class B>
struct same_or_not {
typedef typename detail::remove_reference_and_cv<A>::type plainA;
typedef typename detail::remove_reference_and_cv<B>::type plainB;
typedef typename
arithmetic_or_not<
detail::promote_code<plainA>::value,
detail::promote_code<plainB>::value,
A,
B>::type type;
};
// Yes, clear.
template <class A> struct same_or_not<A, A> {
typedef A type;
};
} // detail
// PHASE 2 : Perform first the potential array_to_pointer conversion
template<class A, class B>
struct return_type_2<other_action<ifthenelsereturn_action>, A, B> {
typedef typename detail::array_to_pointer<A>::type A1;
typedef typename detail::array_to_pointer<B>::type B1;
typedef typename
boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type;
};
// PHASE 1 : Deduction is based on the second and third operand
// return type specialization for conditional expression ends -----------
// Specialization of lambda_functor_base for if_then_else_return.
template<class Args>
class
lambda_functor_base<other_action<ifthenelsereturn_action>, Args> {
public:
Args args;
template <class SigArgs> struct sig {
private:
typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1;
typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2;
public:
typedef typename return_type_2<
other_action<ifthenelsereturn_action>, ret1, ret2
>::type type;
};
public:
explicit lambda_functor_base(const Args& a) : args(a) {}
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const {
return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ?
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)
:
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
}
};
// The code below is from Joel de Guzman, some name changes etc.
// has been made.
///////////////////////////////////////////////////////////////////////////////
//
// if_then_else_composite
//
// This composite has two (2) forms:
//
// if_(condition)
// [
// statement
// ]
//
// and
//
// if_(condition)
// [
// true_statement
// ]
// .else_
// [
// false_statement
// ]
//
// where condition is an lambda_functor that evaluates to bool. If condition
// is true, the true_statement (again an lambda_functor) is executed
// otherwise, the false_statement (another lambda_functor) is executed. The
// result type of this is void. Note the trailing underscore after
// if_ and the leading dot and the trailing underscore before
// and after .else_.
//
///////////////////////////////////////////////////////////////////////////////
template <typename CondT, typename ThenT, typename ElseT>
struct if_then_else_composite {
typedef if_then_else_composite<CondT, ThenT, ElseT> self_t;
template <class SigArgs>
struct sig { typedef void type; };
if_then_else_composite(
CondT const& cond_,
ThenT const& then_,
ElseT const& else__)
: cond(cond_), then(then_), else_(else__) {}
template <class Ret, CALL_TEMPLATE_ARGS>
Ret call(CALL_FORMAL_ARGS) const
{
if (cond.internal_call(CALL_ACTUAL_ARGS))
then.internal_call(CALL_ACTUAL_ARGS);
else
else_.internal_call(CALL_ACTUAL_ARGS);
}
CondT cond; ThenT then; ElseT else_; // lambda_functors
};
//////////////////////////////////
template <typename CondT, typename ThenT>
struct else_gen {
else_gen(CondT const& cond_, ThenT const& then_)
: cond(cond_), then(then_) {}
template <typename ElseT>
lambda_functor<if_then_else_composite<CondT, ThenT,
typename as_lambda_functor<ElseT>::type> >
operator[](ElseT const& else_)
{
typedef if_then_else_composite<CondT, ThenT,
typename as_lambda_functor<ElseT>::type>
result;
return result(cond, then, to_lambda_functor(else_));
}
CondT cond; ThenT then;
};
//////////////////////////////////
template <typename CondT, typename ThenT>
struct if_then_composite {
template <class SigArgs>
struct sig { typedef void type; };
if_then_composite(CondT const& cond_, ThenT const& then_)
: cond(cond_), then(then_), else_(cond, then) {}
template <class Ret, CALL_TEMPLATE_ARGS>
Ret call(CALL_FORMAL_ARGS) const
{
if (cond.internal_call(CALL_ACTUAL_ARGS))
then.internal_call(CALL_ACTUAL_ARGS);
}
CondT cond; ThenT then; // lambda_functors
else_gen<CondT, ThenT> else_;
};
//////////////////////////////////
template <typename CondT>
struct if_gen {
if_gen(CondT const& cond_)
: cond(cond_) {}
template <typename ThenT>
lambda_functor<if_then_composite<
typename as_lambda_functor<CondT>::type,
typename as_lambda_functor<ThenT>::type> >
operator[](ThenT const& then) const
{
typedef if_then_composite<
typename as_lambda_functor<CondT>::type,
typename as_lambda_functor<ThenT>::type>
result;
return result(
to_lambda_functor(cond),
to_lambda_functor(then));
}
CondT cond;
};
//////////////////////////////////
template <typename CondT>
inline if_gen<CondT>
if_(CondT const& cond)
{
return if_gen<CondT>(cond);
}
} // lambda
} // boost
#endif // BOOST_LAMBDA_IF_HPP
|