/usr/include/boost/lambda/closures.hpp is in libboost1.62-dev 1.62.0+dfsg-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | /*=============================================================================
Adaptable closures
Phoenix V0.9
Copyright (c) 2001-2002 Joel de Guzman
Distributed under the Boost Software License, Version 1.0. (See
accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
URL: http://spirit.sourceforge.net/
==============================================================================*/
#ifndef PHOENIX_CLOSURES_HPP
#define PHOENIX_CLOSURES_HPP
///////////////////////////////////////////////////////////////////////////////
#include "boost/lambda/core.hpp"
///////////////////////////////////////////////////////////////////////////////
namespace boost {
namespace lambda {
///////////////////////////////////////////////////////////////////////////////
//
// Adaptable closures
//
// The framework will not be complete without some form of closures
// support. Closures encapsulate a stack frame where local
// variables are created upon entering a function and destructed
// upon exiting. Closures provide an environment for local
// variables to reside. Closures can hold heterogeneous types.
//
// Phoenix closures are true hardware stack based closures. At the
// very least, closures enable true reentrancy in lambda functions.
// A closure provides access to a function stack frame where local
// variables reside. Modeled after Pascal nested stack frames,
// closures can be nested just like nested functions where code in
// inner closures may access local variables from in-scope outer
// closures (accessing inner scopes from outer scopes is an error
// and will cause a run-time assertion failure).
//
// There are three (3) interacting classes:
//
// 1) closure:
//
// At the point of declaration, a closure does not yet create a
// stack frame nor instantiate any variables. A closure declaration
// declares the types and names[note] of the local variables. The
// closure class is meant to be subclassed. It is the
// responsibility of a closure subclass to supply the names for
// each of the local variable in the closure. Example:
//
// struct my_closure : closure<int, string, double> {
//
// member1 num; // names the 1st (int) local variable
// member2 message; // names the 2nd (string) local variable
// member3 real; // names the 3rd (double) local variable
// };
//
// my_closure clos;
//
// Now that we have a closure 'clos', its local variables can be
// accessed lazily using the dot notation. Each qualified local
// variable can be used just like any primitive actor (see
// primitives.hpp). Examples:
//
// clos.num = 30
// clos.message = arg1
// clos.real = clos.num * 1e6
//
// The examples above are lazily evaluated. As usual, these
// expressions return composite actors that will be evaluated
// through a second function call invocation (see operators.hpp).
// Each of the members (clos.xxx) is an actor. As such, applying
// the operator() will reveal its identity:
//
// clos.num() // will return the current value of clos.num
//
// *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
// introduced and initilally implemented the closure member names
// that uses the dot notation.
//
// 2) closure_member
//
// The named local variables of closure 'clos' above are actually
// closure members. The closure_member class is an actor and
// conforms to its conceptual interface. member1..memberN are
// predefined typedefs that correspond to each of the listed types
// in the closure template parameters.
//
// 3) closure_frame
//
// When a closure member is finally evaluated, it should refer to
// an actual instance of the variable in the hardware stack.
// Without doing so, the process is not complete and the evaluated
// member will result to an assertion failure. Remember that the
// closure is just a declaration. The local variables that a
// closure refers to must still be instantiated.
//
// The closure_frame class does the actual instantiation of the
// local variables and links these variables with the closure and
// all its members. There can be multiple instances of
// closure_frames typically situated in the stack inside a
// function. Each closure_frame instance initiates a stack frame
// with a new set of closure local variables. Example:
//
// void foo()
// {
// closure_frame<my_closure> frame(clos);
// /* do something */
// }
//
// where 'clos' is an instance of our closure 'my_closure' above.
// Take note that the usage above precludes locally declared
// classes. If my_closure is a locally declared type, we can still
// use its self_type as a paramater to closure_frame:
//
// closure_frame<my_closure::self_type> frame(clos);
//
// Upon instantiation, the closure_frame links the local variables
// to the closure. The previous link to another closure_frame
// instance created before is saved. Upon destruction, the
// closure_frame unlinks itself from the closure and relinks the
// preceding closure_frame prior to this instance.
//
// The local variables in the closure 'clos' above is default
// constructed in the stack inside function 'foo'. Once 'foo' is
// exited, all of these local variables are destructed. In some
// cases, default construction is not desirable and we need to
// initialize the local closure variables with some values. This
// can be done by passing in the initializers in a compatible
// tuple. A compatible tuple is one with the same number of
// elements as the destination and where each element from the
// destination can be constructed from each corresponding element
// in the source. Example:
//
// tuple<int, char const*, int> init(123, "Hello", 1000);
// closure_frame<my_closure> frame(clos, init);
//
// Here now, our closure_frame's variables are initialized with
// int: 123, char const*: "Hello" and int: 1000.
//
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//
// closure_frame class
//
///////////////////////////////////////////////////////////////////////////////
template <typename ClosureT>
class closure_frame : public ClosureT::tuple_t {
public:
closure_frame(ClosureT& clos)
: ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
{ clos.frame = this; }
template <typename TupleT>
closure_frame(ClosureT& clos, TupleT const& init)
: ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
{ clos.frame = this; }
~closure_frame()
{ frame = save; }
private:
closure_frame(closure_frame const&); // no copy
closure_frame& operator=(closure_frame const&); // no assign
closure_frame* save;
closure_frame*& frame;
};
///////////////////////////////////////////////////////////////////////////////
//
// closure_member class
//
///////////////////////////////////////////////////////////////////////////////
template <int N, typename ClosureT>
class closure_member {
public:
typedef typename ClosureT::tuple_t tuple_t;
closure_member()
: frame(ClosureT::closure_frame_ref()) {}
template <typename TupleT>
struct sig {
typedef typename detail::tuple_element_as_reference<
N, typename ClosureT::tuple_t
>::type type;
};
template <class Ret, class A, class B, class C>
// typename detail::tuple_element_as_reference
// <N, typename ClosureT::tuple_t>::type
Ret
call(A&, B&, C&) const
{
assert(frame);
return boost::tuples::get<N>(*frame);
}
private:
typename ClosureT::closure_frame_t*& frame;
};
///////////////////////////////////////////////////////////////////////////////
//
// closure class
//
///////////////////////////////////////////////////////////////////////////////
template <
typename T0 = null_type,
typename T1 = null_type,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type
>
class closure {
public:
typedef tuple<T0, T1, T2, T3, T4> tuple_t;
typedef closure<T0, T1, T2, T3, T4> self_t;
typedef closure_frame<self_t> closure_frame_t;
closure()
: frame(0) { closure_frame_ref(&frame); }
closure_frame_t& context() { assert(frame); return frame; }
closure_frame_t const& context() const { assert(frame); return frame; }
typedef lambda_functor<closure_member<0, self_t> > member1;
typedef lambda_functor<closure_member<1, self_t> > member2;
typedef lambda_functor<closure_member<2, self_t> > member3;
typedef lambda_functor<closure_member<3, self_t> > member4;
typedef lambda_functor<closure_member<4, self_t> > member5;
private:
closure(closure const&); // no copy
closure& operator=(closure const&); // no assign
template <int N, typename ClosureT>
friend class closure_member;
template <typename ClosureT>
friend class closure_frame;
static closure_frame_t*&
closure_frame_ref(closure_frame_t** frame_ = 0)
{
static closure_frame_t** frame = 0;
if (frame_ != 0)
frame = frame_;
return *frame;
}
closure_frame_t* frame;
};
}}
// namespace
#endif
|