This file is indexed.

/usr/include/boost/hana/unpack.hpp is in libboost1.62-dev 1.62.0+dfsg-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*!
@file
Defines `boost::hana::unpack`.

@copyright Louis Dionne 2013-2016
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
 */

#ifndef BOOST_HANA_UNPACK_HPP
#define BOOST_HANA_UNPACK_HPP

#include <boost/hana/fwd/unpack.hpp>

#include <boost/hana/accessors.hpp>
#include <boost/hana/at.hpp>
#include <boost/hana/concept/foldable.hpp>
#include <boost/hana/concept/iterable.hpp>
#include <boost/hana/concept/struct.hpp>
#include <boost/hana/config.hpp>
#include <boost/hana/core/dispatch.hpp>
#include <boost/hana/first.hpp>
#include <boost/hana/functional/partial.hpp>
#include <boost/hana/fwd/fold_left.hpp>
#include <boost/hana/length.hpp>
#include <boost/hana/pair.hpp>
#include <boost/hana/second.hpp>

#include <cstddef>
#include <utility>


BOOST_HANA_NAMESPACE_BEGIN
    //! @cond
    template <typename Xs, typename F>
    constexpr decltype(auto) unpack_t::operator()(Xs&& xs, F&& f) const {
        using S = typename hana::tag_of<Xs>::type;
        using Unpack = BOOST_HANA_DISPATCH_IF(unpack_impl<S>,
            hana::Foldable<S>::value
        );

    #ifndef BOOST_HANA_CONFIG_DISABLE_CONCEPT_CHECKS
        static_assert(hana::Foldable<S>::value,
        "hana::unpack(xs, f) requires 'xs' to be Foldable");
    #endif

        return Unpack::apply(static_cast<Xs&&>(xs), static_cast<F&&>(f));
    }
    //! @endcond

    template <typename T, bool condition>
    struct unpack_impl<T, when<condition>> : default_ {
        template <typename Xs, typename F>
        static constexpr decltype(auto) apply(Xs&& xs, F&& f) {
            return hana::fold_left(static_cast<Xs&&>(xs),
                                   static_cast<F&&>(f),
                                   hana::partial)();
        }
    };

    template <typename It>
    struct unpack_impl<It, when<
        hana::Iterable<It>::value && !is_default<length_impl<It>>::value
    >> {
        template <typename Xs, typename F, std::size_t ...i>
        static constexpr decltype(auto)
        unpack_helper(Xs&& xs, F&& f, std::index_sequence<i...>) {
            return static_cast<F&&>(f)(hana::at_c<i>(static_cast<Xs&&>(xs))...);
        }

        template <typename Xs, typename F>
        static constexpr decltype(auto) apply(Xs&& xs, F&& f) {
            constexpr std::size_t N = decltype(hana::length(xs))::value;
            return unpack_helper(static_cast<Xs&&>(xs), static_cast<F&&>(f),
                                 std::make_index_sequence<N>{});
        }
    };

    template <typename T, std::size_t N>
    struct unpack_impl<T[N]> {
        template <typename Xs, typename F, std::size_t ...i>
        static constexpr decltype(auto)
        unpack_helper(Xs&& xs, F&& f, std::index_sequence<i...>) {
            return static_cast<F&&>(f)(static_cast<Xs&&>(xs)[i]...);
        }

        template <typename Xs, typename F>
        static constexpr decltype(auto) apply(Xs&& xs, F&& f) {
            return unpack_impl::unpack_helper(static_cast<Xs&&>(xs),
                                              static_cast<F&&>(f),
                                              std::make_index_sequence<N>{});
        }
    };

    //////////////////////////////////////////////////////////////////////////
    // Model for Products
    //////////////////////////////////////////////////////////////////////////
    template <typename T>
    struct unpack_impl<T, when<hana::Product<T>::value>> {
        template <typename P, typename F>
        static constexpr decltype(auto) apply(P&& p, F&& f) {
            return static_cast<F&&>(f)(
                hana::first(static_cast<P&&>(p)),
                hana::second(static_cast<P&&>(p))
            );
        }
    };

    //////////////////////////////////////////////////////////////////////////
    // Model for Structs
    //////////////////////////////////////////////////////////////////////////
    namespace struct_detail {
        // This is equivalent to `demux`, except that `demux` can't forward
        // the `udt` because it does not know the `g`s are accessors. Hence,
        // this can result in faster code.
        struct almost_demux {
            template <typename F, typename Udt, typename ...Members>
            constexpr decltype(auto)
            operator()(F&& f, Udt&& udt, Members&& ...g) const {
                return static_cast<F&&>(f)(hana::make_pair(
                    hana::first(static_cast<Members&&>(g)),
                    hana::second(static_cast<Members&&>(g))
                                                (static_cast<Udt&&>(udt))
                )...);
            }
        };
    }

    template <typename S>
    struct unpack_impl<S, when<hana::Struct<S>::value>> {
        template <typename Udt, typename F>
        static constexpr decltype(auto) apply(Udt&& udt, F&& f) {
            return hana::unpack(hana::accessors<S>(),
                hana::partial(struct_detail::almost_demux{},
                              static_cast<F&&>(f),
                              static_cast<Udt&&>(udt)));
        }
    };
BOOST_HANA_NAMESPACE_END

#endif // !BOOST_HANA_UNPACK_HPP