This file is indexed.

/usr/include/boost/gil/metafunctions.hpp is in libboost1.62-dev 1.62.0+dfsg-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
    Copyright 2005-2007 Adobe Systems Incorporated
   
    Use, modification and distribution are subject to the Boost Software License,
    Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt).

    See http://opensource.adobe.com/gil for most recent version including documentation.
*/

/*************************************************************************************************/

#ifndef GIL_METAFUNCTIONS_HPP
#define GIL_METAFUNCTIONS_HPP

////////////////////////////////////////////////////////////////////////////////////////
/// \file               
/// \brief metafunctions that construct types or return type properties
/// \author Lubomir Bourdev and Hailin Jin \n
///         Adobe Systems Incorporated
///
/// \date 2005-2007 \n Last updated on February 6, 2007
///
////////////////////////////////////////////////////////////////////////////////////////

#include <iterator>
#include <boost/mpl/accumulate.hpp>
#include <boost/mpl/back.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/pop_back.hpp>
#include <boost/mpl/push_back.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/type_traits.hpp>
#include "gil_config.hpp"
#include "gil_concept.hpp"
#include "channel.hpp"

namespace boost { namespace gil {

// forward declarations
template <typename T, typename L> struct pixel;
template <typename BitField,typename ChannelRefVec,typename Layout> struct packed_pixel;
template <typename T, typename C> struct planar_pixel_reference;
template <typename IC, typename C> struct planar_pixel_iterator;
template <typename I> class memory_based_step_iterator;
template <typename I> class memory_based_2d_locator;
template <typename L> class image_view;
template <typename Pixel, bool IsPlanar, typename Alloc> class image;
template <typename T> struct channel_type;
template <typename T> struct color_space_type;
template <typename T> struct channel_mapping_type;
template <typename It> struct is_iterator_adaptor;
template <typename It> struct iterator_adaptor_get_base;
template <typename BitField, typename ChannelBitSizes, typename Layout, bool IsMutable> struct bit_aligned_pixel_reference;

//////////////////////////////////////////////////
///
///  TYPE ANALYSIS METAFUNCTIONS
///  Predicate metafunctions determining properties of GIL types
///
//////////////////////////////////////////////////


/// \defgroup GILIsBasic xxx_is_basic
/// \ingroup TypeAnalysis
/// \brief Determines if GIL constructs are basic. 
///    Basic constructs are the ones that can be generated with the type 
///    factory methods pixel_reference_type, iterator_type, locator_type, view_type and image_type
///    They can be mutable/immutable, planar/interleaved, step/nonstep. They must use GIL-provided models.

/// \brief Determines if a given pixel reference is basic
///    Basic references must use gil::pixel& (if interleaved), gil::planar_pixel_reference (if planar). They must use the standard constness rules. 
/// \ingroup GILIsBasic
template <typename PixelRef>        struct pixel_reference_is_basic                     : public mpl::false_ {};
template <typename T,  typename L>  struct pixel_reference_is_basic<      pixel<T,L>&>  : public mpl::true_ {};
template <typename T,  typename L>  struct pixel_reference_is_basic<const pixel<T,L>&>  : public mpl::true_ {};
template <typename TR, typename Cs> struct pixel_reference_is_basic<planar_pixel_reference<TR,Cs> > : public mpl::true_ {};
template <typename TR, typename Cs> struct pixel_reference_is_basic<const planar_pixel_reference<TR,Cs> > : public mpl::true_ {};


/// \brief Determines if a given pixel iterator is basic
///    Basic iterators must use gil::pixel (if interleaved), gil::planar_pixel_iterator (if planar) and gil::memory_based_step_iterator (if step). They must use the standard constness rules. 
/// \ingroup GILIsBasic
template <typename Iterator>
struct iterator_is_basic : public mpl::false_ {};
template <typename T, typename L>  // mutable   interleaved
struct iterator_is_basic<      pixel<T,L>*      > : public mpl::true_ {};
template <typename T, typename L>  // immutable interleaved
struct iterator_is_basic<const pixel<T,L>*      > : public mpl::true_ {};
template <typename T, typename Cs>  // mutable   planar
struct iterator_is_basic<planar_pixel_iterator<      T*,Cs> > : public mpl::true_ {};
template <typename T, typename Cs>    // immutable planar
struct iterator_is_basic<planar_pixel_iterator<const T*,Cs> > : public mpl::true_ {};
template <typename T, typename L>  // mutable   interleaved step
struct iterator_is_basic<memory_based_step_iterator<      pixel<T,L>*> > : public mpl::true_ {};
template <typename T, typename L>  // immutable interleaved step
struct iterator_is_basic<memory_based_step_iterator<const pixel<T,L>*> > : public mpl::true_ {};
template <typename T, typename Cs>  // mutable   planar step
struct iterator_is_basic<memory_based_step_iterator<planar_pixel_iterator<      T*,Cs> > > : public mpl::true_ {};
template <typename T, typename Cs>    // immutable planar step
struct iterator_is_basic<memory_based_step_iterator<planar_pixel_iterator<const T*,Cs> > > : public mpl::true_ {};


/// \ingroup GILIsBasic
/// \brief Determines if a given locator is basic. A basic locator is memory-based and has basic x_iterator and y_iterator
template <typename Loc> struct locator_is_basic : public mpl::false_ {};
template <typename Iterator> struct locator_is_basic<memory_based_2d_locator<memory_based_step_iterator<Iterator> > > : public iterator_is_basic<Iterator> {};

/// \ingroup GILIsBasic
/// \brief Basic views must be over basic locators
template <typename View> struct view_is_basic : public mpl::false_ {};
template <typename Loc> struct view_is_basic<image_view<Loc> > : public locator_is_basic<Loc> {};

/// \ingroup GILIsBasic
/// \brief Basic images must use basic views and std::allocator of char
template <typename Img> struct image_is_basic : public mpl::false_ {};
template <typename Pixel, bool IsPlanar, typename Alloc> struct image_is_basic<image<Pixel,IsPlanar,Alloc> > : public mpl::true_ {};


/// \defgroup GILIsStep xxx_is_step
/// \ingroup TypeAnalysis
/// \brief Determines if the given iterator/locator/view has a step that could be set dynamically

template <typename I> struct iterator_is_step;
namespace detail {
    template <typename It, bool IsBase, bool EqualsStepType> struct iterator_is_step_impl;
    // iterator that has the same type as its dynamic_x_step_type must be a step iterator
    template <typename It, bool IsBase> struct iterator_is_step_impl<It,IsBase,true> : public mpl::true_{};

    // base iterator can never be a step iterator
    template <typename It> struct iterator_is_step_impl<It,true,false> : public mpl::false_{};

    // for an iterator adaptor, see if its base is step
    template <typename It> struct iterator_is_step_impl<It,false,false> 
        : public iterator_is_step<typename iterator_adaptor_get_base<It>::type>{};
}

/// \ingroup GILIsStep
/// \brief Determines if the given iterator has a step that could be set dynamically
template <typename I> struct iterator_is_step 
    : public detail::iterator_is_step_impl<I, 
        !is_iterator_adaptor<I>::type::value,
        is_same<I,typename dynamic_x_step_type<I>::type>::value >{};

/// \ingroup GILIsStep
/// \brief Determines if the given locator has a horizontal step that could be set dynamically
template <typename L> struct locator_is_step_in_x : public iterator_is_step<typename L::x_iterator> {}; 

/// \ingroup GILIsStep
/// \brief Determines if the given locator has a vertical step that could be set dynamically
template <typename L> struct locator_is_step_in_y : public iterator_is_step<typename L::y_iterator> {}; 

/// \ingroup GILIsStep
/// \brief Determines if the given view has a horizontal step that could be set dynamically
template <typename V> struct view_is_step_in_x : public locator_is_step_in_x<typename V::xy_locator> {}; 

/// \ingroup GILIsStep
/// \brief Determines if the given view has a vertical step that could be set dynamically
template <typename V> struct view_is_step_in_y : public locator_is_step_in_y<typename V::xy_locator> {}; 

/// \brief Determines whether the given pixel reference is a proxy class or a native C++ reference
/// \ingroup TypeAnalysis
template <typename PixelReference>
struct pixel_reference_is_proxy
    : public mpl::not_<is_same<typename remove_const_and_reference<PixelReference>::type,
                               typename remove_const_and_reference<PixelReference>::type::value_type> > {};

/// \brief Given a model of a pixel, determines whether the model represents a pixel reference (as opposed to pixel value)
/// \ingroup TypeAnalysis
template <typename Pixel>
struct pixel_is_reference : public mpl::or_<is_reference<Pixel>, pixel_reference_is_proxy<Pixel> > {};

/// \defgroup GILIsMutable xxx_is_mutable
/// \ingroup TypeAnalysis
/// \brief Determines if the given pixel reference/iterator/locator/view is mutable (i.e. its pixels can be changed)

/// \ingroup GILIsMutable
/// \brief Determines if the given pixel reference is mutable (i.e. its channels can be changed)
///
/// Note that built-in C++ references obey the const qualifier but reference proxy classes do not.
template <typename R> struct pixel_reference_is_mutable : public mpl::bool_<remove_reference<R>::type::is_mutable> {};
template <typename R> struct pixel_reference_is_mutable<const R&>
    : public mpl::and_<pixel_reference_is_proxy<R>, pixel_reference_is_mutable<R> > {};

/// \ingroup GILIsMutable
/// \brief Determines if the given locator is mutable (i.e. its pixels can be changed)
template <typename L> struct locator_is_mutable : public iterator_is_mutable<typename L::x_iterator> {};
/// \ingroup GILIsMutable
/// \brief Determines if the given view is mutable (i.e. its pixels can be changed)
template <typename V> struct view_is_mutable : public iterator_is_mutable<typename V::x_iterator> {};


//////////////////////////////////////////////////
///
///  TYPE FACTORY METAFUNCTIONS
///  Metafunctions returning GIL types from other GIL types
///
//////////////////////////////////////////////////

/// \defgroup TypeFactoryFromElements xxx_type
/// \ingroup TypeFactory
/// \brief Returns the type of a homogeneous GIL construct given its elements (channel, layout, whether it is planar, step, mutable, etc.)

/// \defgroup TypeFactoryFromPixel xxx_type_from_pixel
/// \ingroup TypeFactory
/// \brief Returns the type of a GIL construct given its pixel type, whether it is planar, step, mutable, etc.

/// \defgroup TypeFactoryDerived derived_xxx_type
/// \ingroup TypeFactory
/// \brief Returns the type of a homogeneous GIL construct given a related construct by changing some of its properties

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous pixel reference given the channel type, layout, whether it operates on planar data and whether it is mutable
template <typename T, typename L, bool IsPlanar=false, bool IsMutable=true> struct pixel_reference_type{};
template <typename T, typename L> struct pixel_reference_type<T,L,false,true > { typedef pixel<T,L>& type; };
template <typename T, typename L> struct pixel_reference_type<T,L,false,false> { typedef const pixel<T,L>& type; };
template <typename T, typename L> struct pixel_reference_type<T,L,true,true> { typedef const planar_pixel_reference<typename channel_traits<T>::reference,typename color_space_type<L>::type> type; };       // TODO: Assert M=identity
template <typename T, typename L> struct pixel_reference_type<T,L,true,false> { typedef const planar_pixel_reference<typename channel_traits<T>::const_reference,typename color_space_type<L>::type> type; };// TODO: Assert M=identity

/// \ingroup TypeFactoryFromPixel
/// \brief Returns the type of a pixel iterator given the pixel type, whether it operates on planar data, whether it is a step iterator, and whether it is mutable
template <typename Pixel, bool IsPlanar=false, bool IsStep=false, bool IsMutable=true> struct iterator_type_from_pixel{};
template <typename Pixel> struct iterator_type_from_pixel<Pixel,false,false,true > { typedef Pixel* type; };
template <typename Pixel> struct iterator_type_from_pixel<Pixel,false,false,false> { typedef const Pixel* type; };
template <typename Pixel> struct iterator_type_from_pixel<Pixel,true,false,true> { 
    typedef planar_pixel_iterator<typename channel_traits<typename channel_type<Pixel>::type>::pointer,typename color_space_type<Pixel>::type> type; 
};
template <typename Pixel> struct iterator_type_from_pixel<Pixel,true,false,false> { 
    typedef planar_pixel_iterator<typename channel_traits<typename channel_type<Pixel>::type>::const_pointer,typename color_space_type<Pixel>::type> type; 
};
template <typename Pixel, bool IsPlanar, bool IsMutable> struct iterator_type_from_pixel<Pixel,IsPlanar,true,IsMutable> { 
    typedef memory_based_step_iterator<typename iterator_type_from_pixel<Pixel,IsPlanar,false,IsMutable>::type> type; 
};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous iterator given the channel type, layout, whether it operates on planar data, whether it is a step iterator, and whether it is mutable
template <typename T, typename L, bool IsPlanar=false, bool IsStep=false, bool IsMutable=true> struct iterator_type{};
template <typename T, typename L> struct iterator_type<T,L,false,false,true > { typedef pixel<T,L>* type; };
template <typename T, typename L> struct iterator_type<T,L,false,false,false> { typedef const pixel<T,L>* type; };
template <typename T, typename L> struct iterator_type<T,L,true,false,true> { typedef planar_pixel_iterator<T*,typename L::color_space_t> type; };               // TODO: Assert M=identity
template <typename T, typename L> struct iterator_type<T,L,true,false,false> { typedef planar_pixel_iterator<const T*,typename L::color_space_t> type; };        // TODO: Assert M=identity
template <typename T, typename L, bool IsPlanar, bool IsMutable> struct iterator_type<T,L,IsPlanar,true,IsMutable> { 
    typedef memory_based_step_iterator<typename iterator_type<T,L,IsPlanar,false,IsMutable>::type> type; 
};

/// \brief Given a pixel iterator defining access to pixels along a row, returns the types of the corresponding built-in step_iterator, xy_locator, image_view
/// \ingroup TypeFactory
template <typename XIterator> 
struct type_from_x_iterator {
    typedef memory_based_step_iterator<XIterator>    step_iterator_t;
    typedef memory_based_2d_locator<step_iterator_t> xy_locator_t;
    typedef image_view<xy_locator_t>                     view_t;
};

namespace detail {
    template <typename BitField, typename FirstBit, typename NumBits>
    struct packed_channel_reference_type {
        typedef const packed_channel_reference<BitField,FirstBit::value,NumBits::value,true> type;
    };

    template <typename BitField, typename ChannelBitSizesVector>
    class packed_channel_references_vector_type {
        // If ChannelBitSizesVector is mpl::vector<int,7,7,2>
        // Then first_bits_vector will be mpl::vector<int,0,7,14,16>
        typedef typename mpl::accumulate<ChannelBitSizesVector, mpl::vector1<mpl::int_<0> >, 
            mpl::push_back<mpl::_1, mpl::plus<mpl::back<mpl::_1>, mpl::_2> > >::type first_bits_vector;
    public:
        typedef typename mpl::transform<typename mpl::pop_back<first_bits_vector>::type, ChannelBitSizesVector,
               packed_channel_reference_type<BitField, mpl::_1,mpl::_2> >::type type;
    };

}

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a packed pixel given its bitfield type, the bit size of its channels and its layout.
///
/// A packed pixel has channels that cover bit ranges but itself is byte aligned. RGB565 pixel is an example.
///
/// The size of ChannelBitSizeVector must equal the number of channels in the given layout
/// The sum of bit sizes for all channels must be less than or equal to the number of bits in BitField (and cannot exceed 64).
///  If it is less than the number of bits in BitField, the last bits will be unused.
template <typename BitField, typename ChannelBitSizeVector, typename Layout>
struct packed_pixel_type {
    typedef packed_pixel<BitField, typename detail::packed_channel_references_vector_type<BitField,ChannelBitSizeVector>::type, Layout> type;
};

/// \defgroup TypeFactoryPacked packed_image_type,bit_aligned_image_type
/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of an image whose channels are not byte-aligned. 
/// 
/// A packed image is an image whose pixels are byte aligned, such as "rgb565". <br>
/// A bit-aligned image is an image whose pixels are not byte aligned, such as "rgb222". <br>
/// 
/// The sum of the bit sizes of all channels cannot exceed 64.

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of an interleaved packed image: an image whose channels may not be byte-aligned, but whose pixels are byte aligned.
template <typename BitField, typename ChannelBitSizeVector, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct packed_image_type {
    typedef image<typename packed_pixel_type<BitField,ChannelBitSizeVector,Layout>::type,false,Alloc> type;
};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a single-channel image given its bitfield type, the bit size of its channel and its layout
template <typename BitField, unsigned Size1, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct packed_image1_type : public packed_image_type<BitField, mpl::vector1_c<unsigned, Size1>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a two channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct packed_image2_type : public packed_image_type<BitField, mpl::vector2_c<unsigned, Size1, Size2>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a three channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, unsigned Size3, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct packed_image3_type : public packed_image_type<BitField, mpl::vector3_c<unsigned, Size1, Size2, Size3>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a four channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct packed_image4_type : public packed_image_type<BitField, mpl::vector4_c<unsigned, Size1, Size2, Size3, Size4>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a five channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, unsigned Size5, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct packed_image5_type : public packed_image_type<BitField, mpl::vector5_c<unsigned, Size1, Size2, Size3, Size4, Size5>, Layout, Alloc> {};


/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a packed image whose pixels may not be byte aligned. For example, an "rgb222" image is bit-aligned because its pixel spans six bits.
///
/// Note that the alignment parameter in the constructor of bit-aligned images is in bit units. For example, if you want to construct a bit-aligned
/// image whose rows are byte-aligned, use 8 as the alignment parameter, not 1.

template <typename ChannelBitSizeVector, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct bit_aligned_image_type {
private:
    BOOST_STATIC_CONSTANT(int, bit_size = (mpl::accumulate<ChannelBitSizeVector, mpl::int_<0>, mpl::plus<mpl::_1, mpl::_2> >::type::value));
    typedef typename detail::min_fast_uint<bit_size+7>::type                        bitfield_t;  
    typedef const bit_aligned_pixel_reference<bitfield_t, ChannelBitSizeVector, Layout, true> bit_alignedref_t;
public:
    typedef image<bit_alignedref_t,false,Alloc> type;
};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a single-channel bit-aligned image given the bit size of its channel and its layout
template <unsigned Size1, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct bit_aligned_image1_type : public bit_aligned_image_type<mpl::vector1_c<unsigned, Size1>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a two channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct bit_aligned_image2_type : public bit_aligned_image_type<mpl::vector2_c<unsigned, Size1, Size2>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a three channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, unsigned Size3, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct bit_aligned_image3_type : public bit_aligned_image_type<mpl::vector3_c<unsigned, Size1, Size2, Size3>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a four channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct bit_aligned_image4_type : public bit_aligned_image_type<mpl::vector4_c<unsigned, Size1, Size2, Size3, Size4>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a five channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, unsigned Size5, typename Layout, typename Alloc=std::allocator<unsigned char> >
struct bit_aligned_image5_type : public bit_aligned_image_type<mpl::vector5_c<unsigned, Size1, Size2, Size3, Size4, Size5>, Layout, Alloc> {};



/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous pixel given the channel type and layout
template <typename Channel, typename Layout> 
struct pixel_value_type {
    typedef pixel<Channel,Layout> type;     // by default use gil::pixel. Specializations are provided for 
};

// Specializations for packed channels
template <typename BitField, int NumBits, bool IsMutable, typename Layout> 
struct pixel_value_type<      packed_dynamic_channel_reference<BitField,NumBits,IsMutable>,Layout> :
    public packed_pixel_type<BitField, mpl::vector1_c<unsigned,NumBits>, Layout> {};
template <typename BitField, int NumBits, bool IsMutable, typename Layout> 
struct pixel_value_type<const packed_dynamic_channel_reference<BitField,NumBits,IsMutable>,Layout> :
    public packed_pixel_type<BitField, mpl::vector1_c<unsigned,NumBits>, Layout> {};

template <typename BitField, int FirstBit, int NumBits, bool IsMutable, typename Layout> 
struct pixel_value_type<      packed_channel_reference<BitField,FirstBit,NumBits,IsMutable>,Layout> :
    public packed_pixel_type<BitField, mpl::vector1_c<unsigned,NumBits>, Layout> {};
template <typename BitField, int FirstBit, int NumBits, bool IsMutable, typename Layout> 
struct pixel_value_type<const packed_channel_reference<BitField,FirstBit,NumBits,IsMutable>,Layout> :
    public packed_pixel_type<BitField, mpl::vector1_c<unsigned,NumBits>, Layout> {};

template <int NumBits, typename Layout> 
struct pixel_value_type<packed_channel_value<NumBits>,Layout> :
    public packed_pixel_type<typename detail::min_fast_uint<NumBits>::type, mpl::vector1_c<unsigned,NumBits>, Layout> {};


/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous locator given the channel type, layout, whether it operates on planar data and whether it has a step horizontally
template <typename T, typename L, bool IsPlanar=false, bool IsStepX=false, bool IsMutable=true> 
struct locator_type {
    typedef typename type_from_x_iterator<typename iterator_type<T,L,IsPlanar,IsStepX,IsMutable>::type>::xy_locator_type type;
};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous view given the channel type, layout, whether it operates on planar data and whether it has a step horizontally
template <typename T, typename L, bool IsPlanar=false, bool IsStepX=false, bool IsMutable=true> 
struct view_type {
    typedef typename type_from_x_iterator<typename iterator_type<T,L,IsPlanar,IsStepX,IsMutable>::type>::view_t type;
};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous image given the channel type, layout, and whether it operates on planar data
template <typename T, typename L, bool IsPlanar=false, typename Alloc=std::allocator<unsigned char> > 
struct image_type {
    typedef image<pixel<T,L>, IsPlanar, Alloc> type;
};

/// \ingroup TypeFactoryFromPixel
/// \brief Returns the type of a view the pixel type, whether it operates on planar data and whether it has a step horizontally
template <typename Pixel, bool IsPlanar=false, bool IsStepX=false, bool IsMutable=true> 
struct view_type_from_pixel {
    typedef typename type_from_x_iterator<typename iterator_type_from_pixel<Pixel,IsPlanar,IsStepX,IsMutable>::type>::view_t type;
};


/// \brief Constructs a pixel reference type from a source pixel reference type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source view that you want to keep
template <typename Ref, typename T=use_default, typename L=use_default, typename IsPlanar=use_default, typename IsMutable=use_default>
class derived_pixel_reference_type {
    typedef typename remove_reference<Ref>::type pixel_t;
    typedef typename  mpl::if_<is_same<T, use_default>, typename channel_type<pixel_t>::type,     T >::type channel_t;
    typedef typename  mpl::if_<is_same<L, use_default>, 
        layout<typename color_space_type<pixel_t>::type, typename channel_mapping_type<pixel_t>::type>, L>::type           layout_t;
    static const bool mut   =mpl::if_<is_same<IsMutable,use_default>, pixel_reference_is_mutable<Ref>, IsMutable>::type::value;
    static const bool planar=mpl::if_<is_same<IsPlanar,use_default>,  is_planar<pixel_t>,  IsPlanar>::type::value;
public:
    typedef typename pixel_reference_type<channel_t, layout_t, planar, mut>::type type;
};

/// \brief Constructs a pixel iterator type from a source pixel iterator type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source view that you want to keep
template <typename Iterator, typename T=use_default, typename L=use_default, typename IsPlanar=use_default, typename IsStep=use_default, typename IsMutable=use_default>
class derived_iterator_type {
    typedef typename  mpl::if_<is_same<T ,use_default>, typename channel_type<Iterator>::type,     T >::type channel_t;
    typedef typename  mpl::if_<is_same<L,use_default>, 
        layout<typename color_space_type<Iterator>::type, typename channel_mapping_type<Iterator>::type>, L>::type layout_t;

    static const bool mut   =mpl::if_<is_same<IsMutable,use_default>, iterator_is_mutable<Iterator>, IsMutable>::type::value;
    static const bool planar=mpl::if_<is_same<IsPlanar,use_default>,         is_planar<Iterator>,  IsPlanar>::type::value;
    static const bool step  =mpl::if_<is_same<IsStep  ,use_default>,  iterator_is_step<Iterator>,    IsStep>::type::value;
public:
    typedef typename iterator_type<channel_t, layout_t, planar, step, mut>::type type;
};

/// \brief Constructs an image view type from a source view type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source view that you want to keep
template <typename View, typename T=use_default, typename L=use_default, typename IsPlanar=use_default, typename StepX=use_default, typename IsMutable=use_default>
class derived_view_type {
    typedef typename  mpl::if_<is_same<T ,use_default>, typename channel_type<View>::type, T>::type channel_t;
    typedef typename  mpl::if_<is_same<L,use_default>, 
        layout<typename color_space_type<View>::type, typename channel_mapping_type<View>::type>, L>::type layout_t;
    static const bool mut   =mpl::if_<is_same<IsMutable,use_default>, view_is_mutable<View>, IsMutable>::type::value;
    static const bool planar=mpl::if_<is_same<IsPlanar,use_default>,  is_planar<View>,  IsPlanar>::type::value;
    static const bool step  =mpl::if_<is_same<StepX ,use_default>,  view_is_step_in_x<View>,StepX>::type::value;
public:
    typedef typename view_type<channel_t, layout_t, planar, step, mut>::type type;
};

/// \brief Constructs a homogeneous image type from a source image type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source image that you want to keep
template <typename Image, typename T=use_default, typename L=use_default, typename IsPlanar=use_default>
class derived_image_type {
    typedef typename  mpl::if_<is_same<T ,use_default>, typename channel_type<Image>::type,     T >::type channel_t;
    typedef typename  mpl::if_<is_same<L,use_default>, 
        layout<typename color_space_type<Image>::type, typename channel_mapping_type<Image>::type>, L>::type layout_t;
    static const bool planar=mpl::if_<is_same<IsPlanar,use_default>,  is_planar<Image>,  IsPlanar>::type::value;
public:
    typedef typename image_type<channel_t, layout_t, planar>::type type;
};




} }  // namespace boost::gil

#endif