This file is indexed.

/usr/lib/x86_64-linux-gnu/perl5/5.24/Algorithm/Combinatorics.pm is in libalgorithm-combinatorics-perl 0.27-2+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
package Algorithm::Combinatorics;

use 5.006002;
use strict;

our $VERSION = '0.27';

use XSLoader;
XSLoader::load('Algorithm::Combinatorics', $VERSION);

use Carp;
use Scalar::Util qw(reftype);
use Exporter;
use base 'Exporter';
our @EXPORT_OK = qw(
    combinations
    combinations_with_repetition
    variations
    variations_with_repetition
    tuples
    tuples_with_repetition
    permutations
    circular_permutations
    derangements
    complete_permutations
    partitions
    subsets
);

our %EXPORT_TAGS = (all => [ @EXPORT_OK ]);


sub combinations {
    my ($data, $k) = @_;
    __check_params($data, $k);

    return __contextualize(__null_iter()) if $k < 0;
    return __contextualize(__once_iter()) if $k == 0;
    if ($k > @$data) {
        carp("Parameter k is greater than the size of data");
        return __contextualize(__null_iter());
    }

    my @indices = 0..($k-1);
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_combination(\@indices, @$data-1) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}


sub combinations_with_repetition {
    my ($data, $k) = @_;
    __check_params($data, $k);

    return __contextualize(__null_iter()) if $k < 0;
    return __contextualize(__once_iter()) if $k == 0;

    my @indices = (0) x $k;
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_combination_with_repetition(\@indices, @$data-1) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}

sub subsets {
    my ($data, $k) = @_;
    __check_params($data, $k, 1);

    return combinations($data, $k) if defined $k;

    my $finished = 0;
    my @odometer = (1) x @$data;
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        return if $finished;
        my $subset = __next_subset($data, \@odometer);
        $finished = 1 if @$subset == 0;
        $subset;
    });

    return __contextualize($iter);
}

sub variations {
    my ($data, $k) = @_;
    __check_params($data, $k);

    return __contextualize(__null_iter()) if $k < 0;
    return __contextualize(__once_iter()) if $k == 0;
    if ($k > @$data) {
        carp("Parameter k is greater than the size of data");
        return __contextualize(__null_iter());
    }

    # permutations() is more efficient because it knows
    # all indices are always used
    return permutations($data) if @$data == $k;

    my @indices = 0..($k-1);
    my @used = ((1) x $k, (0) x (@$data-$k));
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_variation(\@indices, \@used, @$data-1) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}
*tuples = \&variations;


sub variations_with_repetition {
    my ($data, $k) = @_;
    __check_params($data, $k);

    return __contextualize(__null_iter()) if $k < 0;
    return __contextualize(__once_iter()) if $k == 0;

    my @indices = (0) x $k;
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_variation_with_repetition(\@indices, @$data-1) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}
*tuples_with_repetition = \&variations_with_repetition;


sub __variations_with_repetition_gray_code {
    my ($data, $k) = @_;
    __check_params($data, $k);

    return __contextualize(__null_iter()) if $k < 0;
    return __contextualize(__once_iter()) if $k == 0;

    my @indices        = (0) x $k;
    my @focus_pointers = 0..$k; # yeah, length $k+1
    my @directions     = (1) x $k;
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_variation_with_repetition_gray_code(
            \@indices,
            \@focus_pointers,
            \@directions,
            @$data-1,
        ) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}


sub permutations {
    my ($data) = @_;
    __check_params($data, 0);

    return __contextualize(__once_iter()) if @$data == 0;

    my @indices = 0..(@$data-1);
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_permutation(\@indices) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}


sub circular_permutations {
    my ($data) = @_;
    __check_params($data, 0);

    return __contextualize(__once_iter())         if @$data == 0;
    return __contextualize(__once_iter([@$data])) if @$data == 1 || @$data == 2;

    my @indices = 1..(@$data-1);
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_permutation(\@indices) == -1 ? undef : [ @{$data}[0, @indices] ];
    }, [ @{$data}[0, @indices] ]);

    return __contextualize($iter);
}

sub __permutations_heap {
    my ($data) = @_;
    __check_params($data, 0);

    return __contextualize(__once_iter()) if @$data == 0;

    my @a = 0..(@$data-1);
    my @c = (0) x (@$data+1); # yeah, there's an spurious $c[0] to make the notation coincide
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_permutation_heap(\@a, \@c) == -1 ? undef : [ @{$data}[@a] ];
    }, [ @{$data}[@a] ]);

    return __contextualize($iter);
}


sub derangements {
    my ($data) = @_;
    __check_params($data, 0);

    return __contextualize(__once_iter()) if @$data == 0;
    return __contextualize(__null_iter()) if @$data == 1;

    my @indices = 0..(@$data-1);
    @indices[$_, $_+1] = @indices[$_+1, $_] for map { 2*$_ } 0..((@$data-2)/2);
    @indices[-1, -2] = @indices[-2, -1] if @$data % 2;
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
        __next_derangement(\@indices) == -1 ? undef : [ @{$data}[@indices] ];
    }, [ @{$data}[@indices] ]);

    return __contextualize($iter);
}

*complete_permutations = \&derangements;


sub partitions {
    my ($data, $k) = @_;
    if (defined $k) {
        __partitions_of_size_p($data, $k);
    } else {
        __partitions_of_all_sizes($data);
    }
}

sub __partitions_of_all_sizes {
    my ($data) = @_;
    __check_params($data, 0);

    return __contextualize(__once_iter()) if @$data == 0;

    my @k = (0) x @$data;
    my @M = (0) x @$data;
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
       __next_partition(\@k, \@M) == -1 ? undef : __slice_partition(\@k, \@M, $data);
    }, __slice_partition(\@k, \@M, $data));

    return __contextualize($iter);
}

# We use @k and $p here and sacrifice the uniform usage of $k
# to follow the notation in [3].
sub __partitions_of_size_p {
    my ($data, $p) = @_;
    __check_params($data, $p);

    return __contextualize(__null_iter()) if $p < 0;
    return __contextualize(__once_iter()) if @$data == 0 && $p == 0;
    return __contextualize(__null_iter()) if $p == 0;

    if ($p > @$data) {
        carp("Parameter k is greater than the size of data");
        return __contextualize(__null_iter());
    }

    my $q = @$data - $p + 1;
    my @k = (0) x $q;
    my @M = (0) x $q;
    push @k, $_ - $q + 1 for $q..(@$data-1);
    push @M, $_ - $q + 1 for $q..(@$data-1);
    my $iter = Algorithm::Combinatorics::Iterator->new(sub {
       __next_partition_of_size_p(\@k, \@M, $p) == -1 ? undef : __slice_partition_of_size_p(\@k, $p, $data);
    }, __slice_partition_of_size_p(\@k, $p, $data));

    return __contextualize($iter);
}


sub __slice_partition {
    my ($k, $M, $data) = @_;
    my @partition = ();
    my $size = $M->[-1] + 1; # $M->[0] is always 0 in our code
    push @partition, [] for 1..$size;
    my $i = 0;
    foreach my $x (@$data) {
        push @{$partition[$k->[$i]]}, $x;
        ++$i;
    }
    return \@partition;
}

# We use @k and $p here and sacrifice the uniform usage of $k
# to follow the notation in [3].
sub __slice_partition_of_size_p {
    my ($k, $p, $data) = @_;
    my @partition = ();
    push @partition, [] for 1..$p;
    my $i = 0;
    foreach my $x (@$data) {
        push @{$partition[$k->[$i]]}, $x;
        ++$i;
    }
    return \@partition;
}


sub __check_params {
    my ($data, $k, $k_is_not_required) = @_;
    if (not defined $data) {
        croak("Missing parameter data");
    }
    unless ($k_is_not_required || defined $k) {
        croak("Missing parameter k");
    }

    my $type = reftype $data;
    if (!defined($type) || $type ne "ARRAY") {
        croak("Parameter data is not an arrayref");
    }

    carp("Parameter k is negative") if !$k_is_not_required && $k < 0;
}


# Given an iterator that responds to the next() method this
# subrutine returns the iterator in scalar context, loops
# over the iterator to build and return an array of results
# in list context, and does nothing but issue a warning in
# void context.
sub __contextualize {
    my $iter = shift;
    my $w = wantarray;
    if (defined $w) {
        if ($w) {
            my @result = ();
            while (my $c = $iter->next) {
                push @result, $c;
            }
            return @result;
        } else {
            return $iter;
        }
    } else {
        my $sub = (caller(1))[3];
        carp("Useless use of $sub in void context");
    }
}

sub __null_iter {
    return Algorithm::Combinatorics::Iterator->new(sub { return });
}


sub __once_iter {
    my $tuple = shift;
    $tuple ? Algorithm::Combinatorics::Iterator->new(sub { return }, $tuple) :
             Algorithm::Combinatorics::Iterator->new(sub { return }, []);
}



# This is a bit dirty by now, the objective is to be able to
# pass an initial sequence to the iterator and avoid a test
# in each iteration saying whether the sequence was already
# returned or not, since that might potentially be done a lot
# of times.
#
# The solution is to return an iterator that has a first sequence
# associated. The first time you call it that sequence is returned
# and the iterator rebless itself to become just a wrapped coderef.
#
# Note that the public contract is that responds to next(), no
# iterator class name is documented.
package Algorithm::Combinatorics::Iterator;

sub new {
    my ($class, $coderef, $first_seq) = @_;
    if (defined $first_seq) {
        return bless [$coderef, $first_seq], $class;
    } else {
        return bless $coderef, 'Algorithm::Combinatorics::JustCoderef';
    }
}

sub next {
    my ($self) = @_;
    $_[0] = $self->[0];
    bless $_[0], 'Algorithm::Combinatorics::JustCoderef';
    return $self->[1];
}

package Algorithm::Combinatorics::JustCoderef;

sub next {
    my ($self) = @_;
    return $self->();
}


1;

__END__



=head1 NAME

Algorithm::Combinatorics - Efficient generation of combinatorial sequences

=head1 SYNOPSIS

 use Algorithm::Combinatorics qw(permutations);

 my @data = qw(a b c);

 # scalar context gives an iterator
 my $iter = permutations(\@data);
 while (my $p = $iter->next) {
     # ...
 }

 # list context slurps
 my @all_permutations = permutations(\@data);

=head1 VERSION

This documentation refers to Algorithm::Combinatorics version 0.26.

=head1 DESCRIPTION

Algorithm::Combinatorics is an efficient generator of combinatorial sequences. Algorithms are selected from the literature (work in progress, see L</REFERENCES>). Iterators do not use recursion, nor stacks, and are written in C.

Tuples are generated in lexicographic order, except in C<subsets()>.

=head1 SUBROUTINES

Algorithm::Combinatorics provides these subroutines:

    permutations(\@data)
    circular_permutations(\@data)
    derangements(\@data)
    complete_permutations(\@data)
    variations(\@data, $k)
    variations_with_repetition(\@data, $k)
    tuples(\@data, $k)
    tuples_with_repetition(\@data, $k)
    combinations(\@data, $k)
    combinations_with_repetition(\@data, $k)
    partitions(\@data[, $k])
    subsets(\@data[, $k])

All of them are context-sensitive:

=over 4

=item *

In scalar context subroutines return an iterator that responds to the C<next()> method. Using this object you can iterate over the sequence of tuples one by one this way:

    my $iter = combinations(\@data, $k);
    while (my $c = $iter->next) {
        # ...
    }

The C<next()> method returns an arrayref to the next tuple, if any, or C<undef> if the
sequence is exhausted.

Memory usage is minimal, no recursion and no stacks are involved.

=item *

In list context subroutines slurp the entire set of tuples. This behaviour is offered
for convenience, but take into account that the resulting array may be really huge:

    my @all_combinations = combinations(\@data, $k);

=back


=head2 permutations(\@data)

The permutations of C<@data> are all its reorderings. For example, the permutations of C<@data = (1, 2, 3)> are:

    (1, 2, 3)
    (1, 3, 2)
    (2, 1, 3)
    (2, 3, 1)
    (3, 1, 2)
    (3, 2, 1)

The number of permutations of C<n> elements is:

    n! = 1,                  if n = 0
    n! = n*(n-1)*...*1,      if n > 0

See some values at L<http://www.research.att.com/~njas/sequences/A000142>.


=head2 circular_permutations(\@data)

The circular permutations of C<@data> are its arrangements around a circle, where only relative order of elements matter, rather than their actual position. Think possible arrangements of people around a circular table for dinner according to whom they have to their right and left, no matter the actual chair they sit on.

For example the circular permutations of C<@data = (1, 2, 3, 4)> are:

    (1, 2, 3, 4)
    (1, 2, 4, 3)
    (1, 3, 2, 4)
    (1, 3, 4, 2)
    (1, 4, 2, 3)
    (1, 4, 3, 2)

The number of circular permutations of C<n> elements is:

        n! = 1,                      if 0 <= n <= 1
    (n-1)! = (n-1)*(n-2)*...*1,      if n > 1

See a few numbers in a comment of L<http://www.research.att.com/~njas/sequences/A000142>.


=head2 derangements(\@data)

The derangements of C<@data> are those reorderings that have no element
in its original place. In jargon those are the permutations of C<@data>
with no fixed points. For example, the derangements of C<@data = (1, 2,
3)> are:

    (2, 3, 1)
    (3, 1, 2)

The number of derangements of C<n> elements is:

    d(n) = 1,                       if n = 0
    d(n) = n*d(n-1) + (-1)**n,      if n > 0

See some values at L<http://www.research.att.com/~njas/sequences/A000166>.


=head2 complete_permutations(\@data)

This is an alias for C<derangements>, documented above.


=head2 variations(\@data, $k)

The variations of length C<$k> of C<@data> are all the tuples of length C<$k> consisting of elements of C<@data>. For example, for C<@data = (1, 2, 3)> and C<$k = 2>:

    (1, 2)
    (1, 3)
    (2, 1)
    (2, 3)
    (3, 1)
    (3, 2)

For this to make sense, C<$k> has to be less than or equal to the length of C<@data>.

Note that

    permutations(\@data);

is equivalent to

    variations(\@data, scalar @data);

The number of variations of C<n> elements taken in groups of C<k> is:

    v(n, k) = 1,                        if k = 0
    v(n, k) = n*(n-1)*...*(n-k+1),      if 0 < k <= n


=head2 variations_with_repetition(\@data, $k)

The variations with repetition of length C<$k> of C<@data> are all the tuples of length C<$k> consisting of elements of C<@data>, including repetitions. For example, for C<@data = (1, 2, 3)> and C<$k = 2>:

    (1, 1)
    (1, 2)
    (1, 3)
    (2, 1)
    (2, 2)
    (2, 3)
    (3, 1)
    (3, 2)
    (3, 3)

Note that C<$k> can be greater than the length of C<@data>. For example, for C<@data = (1, 2)> and C<$k = 3>:

    (1, 1, 1)
    (1, 1, 2)
    (1, 2, 1)
    (1, 2, 2)
    (2, 1, 1)
    (2, 1, 2)
    (2, 2, 1)
    (2, 2, 2)

The number of variations with repetition of C<n> elements taken in groups of C<< k >= 0 >> is:

    vr(n, k) = n**k


=head2 tuples(\@data, $k)

This is an alias for C<variations>, documented above.


=head2 tuples_with_repetition(\@data, $k)

This is an alias for C<variations_with_repetition>, documented above.


=head2 combinations(\@data, $k)

The combinations of length C<$k> of C<@data> are all the sets of size C<$k> consisting of elements of C<@data>. For example, for C<@data = (1, 2, 3, 4)> and C<$k = 3>:

    (1, 2, 3)
    (1, 2, 4)
    (1, 3, 4)
    (2, 3, 4)

For this to make sense, C<$k> has to be less than or equal to the length of C<@data>.

The number of combinations of C<n> elements taken in groups of C<< 0 <= k <= n >> is:

    n choose k = n!/(k!*(n-k)!)


=head2 combinations_with_repetition(\@data, $k);

The combinations of length C<$k> of an array C<@data> are all the bags of size C<$k> consisting of elements of C<@data>, with repetitions. For example, for C<@data = (1, 2, 3)> and C<$k = 2>:

    (1, 1)
    (1, 2)
    (1, 3)
    (2, 2)
    (2, 3)
    (3, 3)

Note that C<$k> can be greater than the length of C<@data>. For example, for C<@data = (1, 2, 3)> and C<$k = 4>:

    (1, 1, 1, 1)
    (1, 1, 1, 2)
    (1, 1, 1, 3)
    (1, 1, 2, 2)
    (1, 1, 2, 3)
    (1, 1, 3, 3)
    (1, 2, 2, 2)
    (1, 2, 2, 3)
    (1, 2, 3, 3)
    (1, 3, 3, 3)
    (2, 2, 2, 2)
    (2, 2, 2, 3)
    (2, 2, 3, 3)
    (2, 3, 3, 3)
    (3, 3, 3, 3)

The number of combinations with repetition of C<n> elements taken in groups of C<< k >= 0 >> is:

    n+k-1 over k = (n+k-1)!/(k!*(n-1)!)


=head2 partitions(\@data[, $k])

A partition of C<@data> is a division of C<@data> in separate pieces. Technically that's a set of subsets of C<@data> which are non-empty, disjoint, and whose union is C<@data>. For example, the partitions of C<@data = (1, 2, 3)> are:

    ((1, 2, 3))
    ((1, 2), (3))
    ((1, 3), (2))
    ((1), (2, 3))
    ((1), (2), (3))

This subroutine returns in consequence tuples of tuples. The top-level tuple (an arrayref) represents the partition itself, whose elements are tuples (arrayrefs) in turn, each one representing a subset of C<@data>.

The number of partitions of a set of C<n> elements are known as Bell numbers, and satisfy the recursion:

    B(0) = 1
    B(n+1) = (n over 0)B(0) + (n over 1)B(1) + ... + (n over n)B(n)

See some values at L<http://www.research.att.com/~njas/sequences/A000110>.

If you pass the optional parameter C<$k>, the subroutine generates only partitions of size C<$k>. This uses an specific algorithm for partitions of known size, which is more efficient than generating all partitions and filtering them by size.

Note that in that case the subsets themselves may have several sizes, it is the number of elements I<of the partition> which is C<$k>. For instance if C<@data> has 5 elements there are partitions of size 2 that consist of a subset of size 2 and its complement of size 3; and partitions of size 2 that consist of a subset of size 1 and its complement of size 4. In both cases the partitions have the same size, they have two elements.

The number of partitions of size C<k> of a set of C<n> elements are known as Stirling numbers of the second kind, and satisfy the recursion:

    S(0, 0) = 1
    S(n, 0) = 0 if n > 0
    S(n, 1) = S(n, n) = 1
    S(n, k) = S(n-1, k-1) + kS(n-1, k)


=head2 subsets(\@data[, $k])

This subroutine iterates over the subsets of data, which is assumed to represent a set. If you pass the optional parameter C<$k> the iteration runs over subsets of data of size C<$k>.

The number of subsets of a set of C<n> elements is

  2**n

See some values at L<http://www.research.att.com/~njas/sequences/A000079>.


=head1 CORNER CASES

Since version 0.05 subroutines are more forgiving for unsual values of C<$k>:

=over 4

=item *

If C<$k> is less than zero no tuple exists. Thus, the very first call to
the iterator's C<next()> method returns C<undef>, and a call in list
context returns the empty list. (See L</DIAGNOSTICS>.)

=item *

If C<$k> is zero we have one tuple, the empty tuple. This is a different
case than the former: when C<$k> is negative there are no tuples at all,
when C<$k> is zero there is one tuple. The rationale for this behaviour
is the same rationale for n choose 0 = 1: the empty tuple is a subset of
C<@data> with C<$k = 0> elements, so it complies with the definition.

=item *

If C<$k> is greater than the size of C<@data>, and we are calling a
subroutine that does not generate tuples with repetitions, no tuple
exists. Thus, the very first call to the iterator's C<next()> method
returns C<undef>, and a call in list context returns the empty
list. (See L</DIAGNOSTICS>.)

=back

In addition, since 0.05 empty C<@data>s are supported as well.


=head1 EXPORT

Algorithm::Combinatorics exports nothing by default. Each of the subroutines can be exported on demand, as in

    use Algorithm::Combinatorics qw(combinations);

and the tag C<all> exports them all:

    use Algorithm::Combinatorics qw(:all);


=head1 DIAGNOSTICS

=head2 Warnings

The following warnings may be issued:

=over

=item Useless use of %s in void context

A subroutine was called in void context.

=item Parameter k is negative

A subroutine was called with a negative k.

=item Parameter k is greater than the size of data

A subroutine that does not generate tuples with repetitions was called with a k greater than the size of data.

=back

=head2 Errors

The following errors may be thrown:

=over

=item Missing parameter data

A subroutine was called with no parameters.

=item Missing parameter k

A subroutine that requires a second parameter k was called without one.

=item Parameter data is not an arrayref

The first parameter is not an arrayref (tested with "reftype()" from Scalar::Util.)

=back

=head1 DEPENDENCIES

Algorithm::Combinatorics is known to run under perl 5.6.2. The
distribution uses L<Test::More> and L<FindBin> for testing,
L<Scalar::Util> for C<reftype()>, and L<XSLoader> for XS.

=head1 BUGS

Please report any bugs or feature requests to
C<bug-algorithm-combinatorics@rt.cpan.org>, or through the web interface at
L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Algorithm-Combinatorics>.

=head1 SEE ALSO

L<Math::Combinatorics> is a pure Perl module that offers similar features.

L<List::PowerSet> offers a fast pure-Perl generator of power sets that
Algorithm::Combinatorics copies and translates to XS.

=head1 BENCHMARKS

There are some benchmarks in the F<benchmarks> directory of the distribution.

=head1 REFERENCES

[1] Donald E. Knuth, I<The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations>. Addison Wesley Professional, 2005. ISBN 0201853930.

[2] Donald E. Knuth, I<The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions>. Addison Wesley Professional, 2005. ISBN 0201853949.

[3] Michael Orlov, I<Efficient Generation of Set Partitions>, L<http://www.informatik.uni-ulm.de/ni/Lehre/WS03/DMM/Software/partitions.pdf>.

=head1 AUTHOR

Xavier Noria (FXN), E<lt>fxn@cpan.orgE<gt>

=head1 COPYRIGHT & LICENSE

Copyright 2005-2012 Xavier Noria, all rights reserved.

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut