/usr/include/JAGS/graph/StochasticNode.h is in jags 4.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | #ifndef STOCHASTIC_NODE_H_
#define STOCHASTIC_NODE_H_
#include <graph/Node.h>
#include <distribution/Distribution.h>
namespace jags {
struct RNG;
/**
* @short Node defined by the BUGS-language operator ~
*
* Stochastic nodes represent the random variables that are the
* fundamental building blocks of a Bayesian hierarchical model. In
* the BUGS language, they are defined on the left hand side of a
* stochastic relation. For example, the relation
*
* <pre>y ~ dnorm(mu, tau) T(L, U)</pre>
*
* defines y to be a normally distributed random variable with parameters
* mu, tau, L, and U (mean, precision, lower bound, upper bound). The
* last two parameters, defined by the T(,) construct, are optional. If
* they are supplied, then the distribution of the node is truncated
* to lie in the range (L, U). Not all distributions can be truncated.
* Distributions that are only bounded on one side may be specified by
* T(L,) or T(,U).
*
* JAGS allows you to define stochastic nodes that are, in fact, not
* random at all, but are deterministic functions of their parameters.
* A common example is the dinterval distribution
*
* <pre>group[i] ~ dinterval(true[i], cutpoints[1:N])</pre>
*
* where the value of group[i] is determined by where the value of
* true[i] falls in the vector of supplied cutpoints. In this case,
* the stochastic node leads a double life. If it is observed, then it
* is considered a random variable, and generates a likelihood for its
* stochastic parents. If it is unobserved then it is treated as a
* deterministic function of its parents, just as if it were a
* LogicalNode.
*
* @see Distribution
*/
class StochasticNode : public Node {
Distribution const * const _dist;
Node const * const _lower;
Node const * const _upper;
bool _observed;
const bool _discrete;
virtual void sp(double *lower, double *upper, unsigned int length,
unsigned int chain) const = 0;
protected:
std::vector<std::vector<double const*> > _parameters;
public:
/**
* Constructs a new StochasticNode
*
* @param dim Dimensions of the node
* @param nchain Number of chains
* @param dist Pointer to the distribution
* @param parameters Vector of parameters
* @param lower Pointer to node defining the lower bound. A NULL
* pointer denotes no lower bound.
* @param upper Pointer to node defining the lower bound. A NULL
* pointer denotes no upper bound.
*/
StochasticNode(std::vector<unsigned int> const &dim,
unsigned int nchain,
Distribution const *dist,
std::vector<Node const *> const ¶meters,
Node const *lower, Node const *upper);
~StochasticNode();
/**
* Returns a pointer to the Distribution.
*/
Distribution const *distribution() const;
/**
* Returns the log of the prior density of the StochasticNode
* given the current parameter values.
*
* @param chain Number of chain (starting from zero) for which
* to evaluate log density.
*
* @param type Indicates whether the full probability density
* function is required (PDF_FULL) or whether partial calculations
* are permitted (PDF_PRIOR, PDF_LIKELIHOOD). See PDFType for
* details.
*/
virtual double logDensity(unsigned int chain, PDFType type) const = 0;
/**
* Draws a random sample from the prior distribution of the node
* given the current values of it's parents, and sets the Node
* to that value.
*
* @param rng Random Number Generator object
* @param chain Index umber of chain to modify
*/
virtual void randomSample(RNG *rng, unsigned int chain) = 0;
/**
* Draws a truncated random sample from the prior distribution of
* the node. The lower and upper parameters are pointers to arrays
* that are assumed to be of the correct size, or NULL pointers if
* there is no bound
*
* @param lower Optional lower bound
* @param upper Optional upper bound
*/
virtual void truncatedSample(RNG *rng, unsigned int chain,
double const *lower=0,
double const *upper=0) = 0;
/**
* A deterministic sample for a stochastic node sets it to a
* "typical" value of the prior distribution, given the current
* values of its parents. The exact behaviour depends on the
* Distribution used to define the StochasticNode, but it will
* usually be the prior mean, median, or mode.
*/
virtual void deterministicSample(unsigned int chain) = 0;
/**
* Stochastic nodes always represent random variables in the model.
*/
bool isRandomVariable() const;
/**
* Writes the lower and upper limits of the support of a given
* stochastic node to the supplied arrays. If the node has upper and
* lower bounds then their values are taken into account in the
* calculation.
*
* @param lower pointer to start of an array that will hold the lower
* limit of the support
*
* @param lower pointer to start of an array that will hold the upper
* limit of the support
*
* @param length size of the lower and upper arrays.
*
* @param chain Index number of chain to query
*/
void support(double *lower, double *upper, unsigned int length,
unsigned int chain) const;
double const *lowerLimit(unsigned int chain) const;
double const *upperLimit(unsigned int chain) const;
std::string deparse(std::vector<std::string> const ¶meters) const;
bool isDiscreteValued() const;
/**
* A stochastic node is fixed if the setData member function
* has been called.
*/
bool isFixed() const;
/**
* Sets the value of the node to be the same in all chains.
* After setData is called, the stochastic node is considered
* observed.
*
* @param data Pointer to an array of data values.
*
* @param length Length of the array containing the data values.
*
* @see Node#setValue
*/
void setData(double const *value, unsigned int length);
/**
* A stochastic node is always a random variable, and is observed
* if its value has been set with setData.
*/
RVStatus randomVariableStatus() const;
Node const *lowerBound() const;
Node const *upperBound() const;
/*
* Creates a copy of the stochastic node. Supplying the parents
* of this node as the argument creates an identical copy.
*
* @param parents Parents of the cloned node.
StochasticNode * clone(std::vector<Node const *> const &parents) const;
virtual StochasticNode *
clone(std::vector<Node const *> const ¶meters,
Node const *lower, Node const *upper) const = 0;
*/
virtual unsigned int df() const = 0;
virtual double KL(unsigned int chain1, unsigned int chain2, RNG *rng,
unsigned int nrep) const = 0;
void unlinkParents();
};
/**
* Returns true if the upper and lower limits of the support of
* the stochastic node are fixed. Upper and lower bounds are taken
* into account.
*/
bool isSupportFixed(StochasticNode const *snode);
/**
* Indicates whether the distribution of the node is bounded
* either above or below.
*/
bool isBounded(StochasticNode const *node);
/**
* For stochastic nodes, this is a synonym of isFixed
*/
inline bool isObserved(StochasticNode const *s) { return s->isFixed(); }
} /* namespace jags */
#endif /* STOCHASTIC_NODE_H_ */
|