/usr/include/ETL/_bezier.h is in etl-dev 0.04.19-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 | /*! ========================================================================
** Extended Template Library
** Bezier Template Class Implementation
** $Id$
**
** Copyright (c) 2002 Robert B. Quattlebaum Jr.
** Copyright (c) 2007 Chris Moore
**
** This package is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License as
** published by the Free Software Foundation; either version 2 of
** the License, or (at your option) any later version.
**
** This package is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** General Public License for more details.
**
** === N O T E S ===========================================================
**
** This is an internal header file, included by other ETL headers.
** You should not attempt to use it directly.
**
** ========================================================================= */
/* === S T A R T =========================================================== */
#ifndef __ETL__BEZIER_H
#define __ETL__BEZIER_H
/* === H E A D E R S ======================================================= */
#include "_curve_func.h"
#include <cmath> // for ldexp
// #include <ETL/fixed> // not used
/* === M A C R O S ========================================================= */
#define MAXDEPTH 64 /* Maximum depth for recursion */
/* take binary sign of a, either -1, or 1 if >= 0 */
#define SGN(a) (((a)<0) ? -1 : 1)
/* find minimum of a and b */
#ifndef MIN
#define MIN(a,b) (((a)<(b))?(a):(b))
#endif
/* find maximum of a and b */
#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif
#define BEZIER_EPSILON (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
//#define BEZIER_EPSILON 0.00005 /*Flatness control value */
#define DEGREE 3 /* Cubic Bezier curve */
#define W_DEGREE 5 /* Degree of eqn to find roots of */
/* === T Y P E D E F S ===================================================== */
/* === C L A S S E S & S T R U C T S ======================================= */
_ETL_BEGIN_NAMESPACE
template<typename V,typename T> class bezier;
//! Cubic Bezier Curve Base Class
// This generic implementation uses the DeCasteljau algorithm.
// Works for just about anything that has an affine combination function
template <typename V,typename T=float>
class bezier_base : public std::unary_function<T,V>
{
public:
typedef V value_type;
typedef T time_type;
private:
value_type a,b,c,d;
time_type r,s;
protected:
affine_combo<value_type,time_type> affine_func;
public:
bezier_base():r(0.0),s(1.0) { }
bezier_base(
const value_type &a, const value_type &b, const value_type &c, const value_type &d,
const time_type &r=0.0, const time_type &s=1.0):
a(a),b(b),c(c),d(d),r(r),s(s) { sync(); }
void sync()
{
}
value_type
operator()(time_type t)const
{
t=(t-r)/(s-r);
return
affine_func(
affine_func(
affine_func(a,b,t),
affine_func(b,c,t)
,t),
affine_func(
affine_func(b,c,t),
affine_func(c,d,t)
,t)
,t);
}
/*
void evaluate(time_type t, value_type &f, value_type &df) const
{
t=(t-r)/(s-r);
value_type p1 = affine_func(
affine_func(a,b,t),
affine_func(b,c,t)
,t);
value_type p2 = affine_func(
affine_func(b,c,t),
affine_func(c,d,t)
,t);
f = affine_func(p1,p2,t);
df = (p2-p1)*3;
}
*/
void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; }
void set_r(time_type new_r) { r=new_r; }
void set_s(time_type new_s) { s=new_s; }
const time_type &get_r()const { return r; }
const time_type &get_s()const { return s; }
time_type get_dt()const { return s-r; }
bool intersect_hull(const bezier_base<value_type,time_type> &/*x*/)const
{
return 0;
}
//! Bezier curve intersection function
/*! Calculates the time of intersection
** for the calling curve.
**
** I still have not figured out a good generic
** method of doing this for a bi-infinite
** cubic bezier curve calculated with the DeCasteljau
** algorithm.
**
** One method, although it does not work for the
** entire bi-infinite curve, is to iteratively
** intersect the hulls. However, we would only detect
** intersections that occur between R and S.
**
** It is entirely possible that a new construct similar
** to the affine combination function will be necessary
** for this to work properly.
**
** For now, this function is BROKEN. (although it works
** for the floating-point specializations, using newton's method)
*/
time_type intersect(const bezier_base<value_type,time_type> &/*x*/, time_type /*near=0.0*/)const
{
return 0;
}
/* subdivide at some time t into 2 separate curves left and right
b0 l1
* 0+1 l2
b1 * 1+2*1+2 l3
* 1+2 * 0+3*1+3*2+3 l4,r1
b2 * 1+2*2+2 r2 *
* 2+3 r3 *
b3 r4 *
*
0.1 2.3 -> 0.1 2 3 4 5.6
*/
/* void subdivide(bezier_base *left, bezier_base *right, const time_type &time = (time_type)0.5) const
{
time_type t = (time-r)/(s-r);
bezier_base lt,rt;
value_type temp;
//1st stage points to keep
lt.a = a;
rt.d = d;
//2nd stage calc
lt.b = affine_func(a,b,t);
temp = affine_func(b,c,t);
rt.c = affine_func(c,d,t);
//3rd stage calc
lt.c = affine_func(lt.b,temp,t);
rt.b = affine_func(temp,rt.c,t);
//last stage calc
lt.d = rt.a = affine_func(lt.c,rt.b,t);
//set the time range for l,r (the inside values should be 1, 0 respectively)
lt.r = r;
rt.s = s;
//give back the curves
if(left) *left = lt;
if(right) *right = rt;
}
*/
value_type &
operator[](int i)
{ return (&a)[i]; }
const value_type &
operator[](int i) const
{ return (&a)[i]; }
};
#if 1
// Fast float implementation of a cubic bezier curve
template <>
class bezier_base<float,float> : public std::unary_function<float,float>
{
public:
typedef float value_type;
typedef float time_type;
private:
// affine_combo<value_type,time_type> affine_func;
value_type a,b,c,d;
time_type r,s;
value_type _coeff[4];
time_type drs; // reciprocal of (s-r)
public:
bezier_base():r(0.0),s(1.0),drs(1.0) { }
bezier_base(
const value_type &a, const value_type &b, const value_type &c, const value_type &d,
const time_type &r=0.0, const time_type &s=1.0):
a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
void sync()
{
// drs=1.0/(s-r);
_coeff[0]= a;
_coeff[1]= b*3 - a*3;
_coeff[2]= c*3 - b*6 + a*3;
_coeff[3]= d - c*3 + b*3 - a;
}
// Cost Summary: 4 products, 3 sums, and 1 difference.
inline value_type
operator()(time_type t)const
{ t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=1.0/(s-r); }
void set_r(time_type new_r) { r=new_r; drs=1.0/(s-r); }
void set_s(time_type new_s) { s=new_s; drs=1.0/(s-r); }
const time_type &get_r()const { return r; }
const time_type &get_s()const { return s; }
time_type get_dt()const { return s-r; }
//! Bezier curve intersection function
/*! Calculates the time of intersection
** for the calling curve.
*/
time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0.0,int i=15)const
{
//BROKEN - the time values of the 2 curves should be independent
value_type system[4];
system[0]=_coeff[0]-x._coeff[0];
system[1]=_coeff[1]-x._coeff[1];
system[2]=_coeff[2]-x._coeff[2];
system[3]=_coeff[3]-x._coeff[3];
t-=r;
t*=drs;
// Newton's method
// Inner loop cost summary: 7 products, 5 sums, 1 difference
for(;i;i--)
t-= (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
(system[1]+(system[2]*2+(system[3]*3)*t)*t);
t*=(s-r);
t+=r;
return t;
}
value_type &
operator[](int i)
{ return (&a)[i]; }
const value_type &
operator[](int i) const
{ return (&a)[i]; }
};
// Fast double implementation of a cubic bezier curve
template <>
class bezier_base<double,float> : public std::unary_function<float,double>
{
public:
typedef double value_type;
typedef float time_type;
private:
// affine_combo<value_type,time_type> affine_func;
value_type a,b,c,d;
time_type r,s;
value_type _coeff[4];
time_type drs; // reciprocal of (s-r)
public:
bezier_base():r(0.0),s(1.0),drs(1.0) { }
bezier_base(
const value_type &a, const value_type &b, const value_type &c, const value_type &d,
const time_type &r=0.0, const time_type &s=1.0):
a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
void sync()
{
// drs=1.0/(s-r);
_coeff[0]= a;
_coeff[1]= b*3 - a*3;
_coeff[2]= c*3 - b*6 + a*3;
_coeff[3]= d - c*3 + b*3 - a;
}
// 4 products, 3 sums, and 1 difference.
inline value_type
operator()(time_type t)const
{ t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=1.0/(s-r); }
void set_r(time_type new_r) { r=new_r; drs=1.0/(s-r); }
void set_s(time_type new_s) { s=new_s; drs=1.0/(s-r); }
const time_type &get_r()const { return r; }
const time_type &get_s()const { return s; }
time_type get_dt()const { return s-r; }
//! Bezier curve intersection function
/*! Calculates the time of intersection
** for the calling curve.
*/
time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0.0,int i=15)const
{
//BROKEN - the time values of the 2 curves should be independent
value_type system[4];
system[0]=_coeff[0]-x._coeff[0];
system[1]=_coeff[1]-x._coeff[1];
system[2]=_coeff[2]-x._coeff[2];
system[3]=_coeff[3]-x._coeff[3];
t-=r;
t*=drs;
// Newton's method
// Inner loop: 7 products, 5 sums, 1 difference
for(;i;i--)
t-= (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
(system[1]+(system[2]*2+(system[3]*3)*t)*t);
t*=(s-r);
t+=r;
return t;
}
value_type &
operator[](int i)
{ return (&a)[i]; }
const value_type &
operator[](int i) const
{ return (&a)[i]; }
};
//#ifdef __FIXED__
// Fast double implementation of a cubic bezier curve
/*
template <>
template <class T,unsigned int FIXED_BITS>
class bezier_base<fixed_base<T,FIXED_BITS> > : std::unary_function<fixed_base<T,FIXED_BITS>,fixed_base<T,FIXED_BITS> >
{
public:
typedef fixed_base<T,FIXED_BITS> value_type;
typedef fixed_base<T,FIXED_BITS> time_type;
private:
affine_combo<value_type,time_type> affine_func;
value_type a,b,c,d;
time_type r,s;
value_type _coeff[4];
time_type drs; // reciprocal of (s-r)
public:
bezier_base():r(0.0),s(1.0),drs(1.0) { }
bezier_base(
const value_type &a, const value_type &b, const value_type &c, const value_type &d,
const time_type &r=0, const time_type &s=1):
a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
void sync()
{
drs=time_type(1)/(s-r);
_coeff[0]= a;
_coeff[1]= b*3 - a*3;
_coeff[2]= c*3 - b*6 + a*3;
_coeff[3]= d - c*3 + b*3 - a;
}
// 4 products, 3 sums, and 1 difference.
inline value_type
operator()(time_type t)const
{ t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=time_type(1)/(s-r); }
void set_r(time_type new_r) { r=new_r; drs=time_type(1)/(s-r); }
void set_s(time_type new_s) { s=new_s; drs=time_type(1)/(s-r); }
const time_type &get_r()const { return r; }
const time_type &get_s()const { return s; }
time_type get_dt()const { return s-r; }
//! Bezier curve intersection function
//! Calculates the time of intersection
// for the calling curve.
//
time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0,int i=15)const
{
value_type system[4];
system[0]=_coeff[0]-x._coeff[0];
system[1]=_coeff[1]-x._coeff[1];
system[2]=_coeff[2]-x._coeff[2];
system[3]=_coeff[3]-x._coeff[3];
t-=r;
t*=drs;
// Newton's method
// Inner loop: 7 products, 5 sums, 1 difference
for(;i;i--)
t-=(time_type) ( (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
(system[1]+(system[2]*2+(system[3]*3)*t)*t) );
t*=(s-r);
t+=r;
return t;
}
value_type &
operator[](int i)
{ return (&a)[i]; }
const value_type &
operator[](int i) const
{ return (&a)[i]; }
};
*/
//#endif
#endif
template <typename V, typename T>
class bezier_iterator
{
public:
struct iterator_category {};
typedef V value_type;
typedef T difference_type;
typedef V reference;
private:
difference_type t;
difference_type dt;
bezier_base<V,T> curve;
public:
/*
reference
operator*(void)const { return curve(t); }
const surface_iterator&
operator++(void)
{ t+=dt; return &this; }
const surface_iterator&
operator++(int)
{ hermite_iterator _tmp=*this; t+=dt; return _tmp; }
const surface_iterator&
operator--(void)
{ t-=dt; return &this; }
const surface_iterator&
operator--(int)
{ hermite_iterator _tmp=*this; t-=dt; return _tmp; }
surface_iterator
operator+(difference_type __n) const
{ return surface_iterator(data+__n[0]+__n[1]*pitch,pitch); }
surface_iterator
operator-(difference_type __n) const
{ return surface_iterator(data-__n[0]-__n[1]*pitch,pitch); }
*/
};
template <typename V,typename T=float>
class bezier : public bezier_base<V,T>
{
public:
typedef V value_type;
typedef T time_type;
typedef float distance_type;
typedef bezier_iterator<V,T> iterator;
typedef bezier_iterator<V,T> const_iterator;
distance_func<value_type> dist;
using bezier_base<V,T>::get_r;
using bezier_base<V,T>::get_s;
using bezier_base<V,T>::get_dt;
public:
bezier() { }
bezier(const value_type &a, const value_type &b, const value_type &c, const value_type &d):
bezier_base<V,T>(a,b,c,d) { }
const_iterator begin()const;
const_iterator end()const;
time_type find_closest(bool fast, const value_type& x, int i=7)const
{
if (!fast)
{
value_type array[4] = {
bezier<V,T>::operator[](0),
bezier<V,T>::operator[](1),
bezier<V,T>::operator[](2),
bezier<V,T>::operator[](3)};
return NearestPointOnCurve(x, array);
}
else
{
time_type r(0), s(1);
float t((r+s)*0.5); /* half way between r and s */
for(;i;i--)
{
// compare 33% of the way between r and s with 67% of the way between r and s
if(dist(this->operator()((s-r)*(1.0/3.0)+r), x) <
dist(this->operator()((s-r)*(2.0/3.0)+r), x))
s=t;
else
r=t;
t=((r+s)*0.5);
}
return t;
}
}
distance_type find_distance(time_type r, time_type s, int steps=7)const
{
const time_type inc((s-r)/steps);
if (!inc) return 0;
distance_type ret(0);
value_type last(this->operator()(r));
for(r+=inc;r<s;r+=inc)
{
const value_type n(this->operator()(r));
ret+=dist.uncook(dist(last,n));
last=n;
}
ret+=dist.uncook(dist(last,this->operator()(r)))*(s-(r-inc))/inc;
return ret;
}
distance_type length()const { return find_distance(get_r(),get_s()); }
/* subdivide at some time t into 2 separate curves left and right
b0 l1
* 0+1 l2
b1 * 1+2*1+2 l3
* 1+2 * 0+3*1+3*2+3 l4,r1
b2 * 1+2*2+2 r2 *
* 2+3 r3 *
b3 r4 *
*
0.1 2.3 -> 0.1 2 3 4 5.6
*/
void subdivide(bezier *left, bezier *right, const time_type &time = (time_type)0.5) const
{
time_type t=(time-get_r())/get_dt();
bezier lt,rt;
value_type temp;
const value_type& a((*this)[0]);
const value_type& b((*this)[1]);
const value_type& c((*this)[2]);
const value_type& d((*this)[3]);
//1st stage points to keep
lt[0] = a;
rt[3] = d;
//2nd stage calc
lt[1] = this->affine_func(a,b,t);
temp = this->affine_func(b,c,t);
rt[2] = this->affine_func(c,d,t);
//3rd stage calc
lt[2] = this->affine_func(lt[1],temp,t);
rt[1] = this->affine_func(temp,rt[2],t);
//last stage calc
lt[3] = rt[0] = this->affine_func(lt[2],rt[1],t);
//set the time range for l,r (the inside values should be 1, 0 respectively)
lt.set_r(get_r());
rt.set_s(get_s());
lt.sync();
rt.sync();
//give back the curves
if(left) *left = lt;
if(right) *right = rt;
}
void evaluate(time_type t, value_type &f, value_type &df) const
{
t=(t-get_r())/get_dt();
const value_type& a((*this)[0]);
const value_type& b((*this)[1]);
const value_type& c((*this)[2]);
const value_type& d((*this)[3]);
const value_type p1 = affine_func(
affine_func(a,b,t),
affine_func(b,c,t)
,t);
const value_type p2 = affine_func(
affine_func(b,c,t),
affine_func(c,d,t)
,t);
f = affine_func(p1,p2,t);
df = (p2-p1)*3;
}
private:
/*
* Bezier :
* Evaluate a Bezier curve at a particular parameter value
* Fill in control points for resulting sub-curves if "Left" and
* "Right" are non-null.
*
* int degree; Degree of bezier curve
* value_type *VT; Control pts
* time_type t; Parameter value
* value_type *Left; RETURN left half ctl pts
* value_type *Right; RETURN right half ctl pts
*/
static value_type Bezier(value_type *VT, int degree, time_type t, value_type *Left, value_type *Right)
{
int i, j; /* Index variables */
value_type Vtemp[W_DEGREE+1][W_DEGREE+1];
/* Copy control points */
for (j = 0; j <= degree; j++)
Vtemp[0][j] = VT[j];
/* Triangle computation */
for (i = 1; i <= degree; i++)
for (j =0 ; j <= degree - i; j++)
{
Vtemp[i][j][0] = (1.0 - t) * Vtemp[i-1][j][0] + t * Vtemp[i-1][j+1][0];
Vtemp[i][j][1] = (1.0 - t) * Vtemp[i-1][j][1] + t * Vtemp[i-1][j+1][1];
}
if (Left != NULL)
for (j = 0; j <= degree; j++)
Left[j] = Vtemp[j][0];
if (Right != NULL)
for (j = 0; j <= degree; j++)
Right[j] = Vtemp[degree-j][j];
return (Vtemp[degree][0]);
}
/*
* CrossingCount :
* Count the number of times a Bezier control polygon
* crosses the 0-axis. This number is >= the number of roots.
*
* value_type *VT; Control pts of Bezier curve
*/
static int CrossingCount(value_type *VT)
{
int i;
int n_crossings = 0; /* Number of zero-crossings */
int sign, old_sign; /* Sign of coefficients */
sign = old_sign = SGN(VT[0][1]);
for (i = 1; i <= W_DEGREE; i++)
{
sign = SGN(VT[i][1]);
if (sign != old_sign) n_crossings++;
old_sign = sign;
}
return n_crossings;
}
/*
* ControlPolygonFlatEnough :
* Check if the control polygon of a Bezier curve is flat enough
* for recursive subdivision to bottom out.
*
* value_type *VT; Control points
*/
static int ControlPolygonFlatEnough(value_type *VT)
{
int i; /* Index variable */
distance_type distance[W_DEGREE]; /* Distances from pts to line */
distance_type max_distance_above; /* maximum of these */
distance_type max_distance_below;
time_type intercept_1, intercept_2, left_intercept, right_intercept;
distance_type a, b, c; /* Coefficients of implicit */
/* eqn for line from VT[0]-VT[deg] */
/* Find the perpendicular distance */
/* from each interior control point to */
/* line connecting VT[0] and VT[W_DEGREE] */
{
distance_type abSquared;
/* Derive the implicit equation for line connecting first *
* and last control points */
a = VT[0][1] - VT[W_DEGREE][1];
b = VT[W_DEGREE][0] - VT[0][0];
c = VT[0][0] * VT[W_DEGREE][1] - VT[W_DEGREE][0] * VT[0][1];
abSquared = (a * a) + (b * b);
for (i = 1; i < W_DEGREE; i++)
{
/* Compute distance from each of the points to that line */
distance[i] = a * VT[i][0] + b * VT[i][1] + c;
if (distance[i] > 0.0) distance[i] = (distance[i] * distance[i]) / abSquared;
if (distance[i] < 0.0) distance[i] = -(distance[i] * distance[i]) / abSquared;
}
}
/* Find the largest distance */
max_distance_above = max_distance_below = 0.0;
for (i = 1; i < W_DEGREE; i++)
{
if (distance[i] < 0.0) max_distance_below = MIN(max_distance_below, distance[i]);
if (distance[i] > 0.0) max_distance_above = MAX(max_distance_above, distance[i]);
}
/* Implicit equation for "above" line */
intercept_1 = -(c + max_distance_above)/a;
/* Implicit equation for "below" line */
intercept_2 = -(c + max_distance_below)/a;
/* Compute intercepts of bounding box */
left_intercept = MIN(intercept_1, intercept_2);
right_intercept = MAX(intercept_1, intercept_2);
return 0.5 * (right_intercept-left_intercept) < BEZIER_EPSILON ? 1 : 0;
}
/*
* ComputeXIntercept :
* Compute intersection of chord from first control point to last
* with 0-axis.
*
* value_type *VT; Control points
*/
static time_type ComputeXIntercept(value_type *VT)
{
distance_type YNM = VT[W_DEGREE][1] - VT[0][1];
return (YNM*VT[0][0] - (VT[W_DEGREE][0] - VT[0][0])*VT[0][1]) / YNM;
}
/*
* FindRoots :
* Given a 5th-degree equation in Bernstein-Bezier form, find
* all of the roots in the interval [0, 1]. Return the number
* of roots found.
*
* value_type *w; The control points
* time_type *t; RETURN candidate t-values
* int depth; The depth of the recursion
*/
static int FindRoots(value_type *w, time_type *t, int depth)
{
int i;
value_type Left[W_DEGREE+1]; /* New left and right */
value_type Right[W_DEGREE+1]; /* control polygons */
int left_count; /* Solution count from */
int right_count; /* children */
time_type left_t[W_DEGREE+1]; /* Solutions from kids */
time_type right_t[W_DEGREE+1];
switch (CrossingCount(w))
{
case 0 :
{ /* No solutions here */
return 0;
}
case 1 :
{ /* Unique solution */
/* Stop recursion when the tree is deep enough */
/* if deep enough, return 1 solution at midpoint */
if (depth >= MAXDEPTH)
{
t[0] = (w[0][0] + w[W_DEGREE][0]) / 2.0;
return 1;
}
if (ControlPolygonFlatEnough(w))
{
t[0] = ComputeXIntercept(w);
return 1;
}
break;
}
}
/* Otherwise, solve recursively after */
/* subdividing control polygon */
Bezier(w, W_DEGREE, 0.5, Left, Right);
left_count = FindRoots(Left, left_t, depth+1);
right_count = FindRoots(Right, right_t, depth+1);
/* Gather solutions together */
for (i = 0; i < left_count; i++) t[i] = left_t[i];
for (i = 0; i < right_count; i++) t[i+left_count] = right_t[i];
/* Send back total number of solutions */
return (left_count+right_count);
}
/*
* ConvertToBezierForm :
* Given a point and a Bezier curve, generate a 5th-degree
* Bezier-format equation whose solution finds the point on the
* curve nearest the user-defined point.
*
* value_type& P; The point to find t for
* value_type *VT; The control points
*/
static void ConvertToBezierForm(const value_type& P, value_type *VT, value_type w[W_DEGREE+1])
{
int i, j, k, m, n, ub, lb;
int row, column; /* Table indices */
value_type c[DEGREE+1]; /* VT(i)'s - P */
value_type d[DEGREE]; /* VT(i+1) - VT(i) */
distance_type cdTable[3][4]; /* Dot product of c, d */
static distance_type z[3][4] = { /* Precomputed "z" for cubics */
{1.0, 0.6, 0.3, 0.1},
{0.4, 0.6, 0.6, 0.4},
{0.1, 0.3, 0.6, 1.0}};
/* Determine the c's -- these are vectors created by subtracting */
/* point P from each of the control points */
for (i = 0; i <= DEGREE; i++)
c[i] = VT[i] - P;
/* Determine the d's -- these are vectors created by subtracting */
/* each control point from the next */
for (i = 0; i <= DEGREE - 1; i++)
d[i] = (VT[i+1] - VT[i]) * 3.0;
/* Create the c,d table -- this is a table of dot products of the */
/* c's and d's */
for (row = 0; row <= DEGREE - 1; row++)
for (column = 0; column <= DEGREE; column++)
cdTable[row][column] = d[row] * c[column];
/* Now, apply the z's to the dot products, on the skew diagonal */
/* Also, set up the x-values, making these "points" */
for (i = 0; i <= W_DEGREE; i++)
{
w[i][0] = (distance_type)(i) / W_DEGREE;
w[i][1] = 0.0;
}
n = DEGREE;
m = DEGREE-1;
for (k = 0; k <= n + m; k++)
{
lb = MAX(0, k - m);
ub = MIN(k, n);
for (i = lb; i <= ub; i++)
{
j = k - i;
w[i+j][1] += cdTable[j][i] * z[j][i];
}
}
}
/*
* NearestPointOnCurve :
* Compute the parameter value of the point on a Bezier
* curve segment closest to some arbitrary, user-input point.
* Return the point on the curve at that parameter value.
*
* value_type& P; The user-supplied point
* value_type *VT; Control points of cubic Bezier
*/
static time_type NearestPointOnCurve(const value_type& P, value_type VT[4])
{
value_type w[W_DEGREE+1]; /* Ctl pts of 5th-degree curve */
time_type t_candidate[W_DEGREE]; /* Possible roots */
int n_solutions; /* Number of roots found */
time_type t; /* Parameter value of closest pt */
/* Convert problem to 5th-degree Bezier form */
ConvertToBezierForm(P, VT, w);
/* Find all possible roots of 5th-degree equation */
n_solutions = FindRoots(w, t_candidate, 0);
/* Compare distances of P to all candidates, and to t=0, and t=1 */
{
distance_type dist, new_dist;
value_type p, v;
int i;
/* Check distance to beginning of curve, where t = 0 */
dist = (P - VT[0]).mag_squared();
t = 0.0;
/* Find distances for candidate points */
for (i = 0; i < n_solutions; i++)
{
p = Bezier(VT, DEGREE, t_candidate[i], (value_type *)NULL, (value_type *)NULL);
new_dist = (P - p).mag_squared();
if (new_dist < dist)
{
dist = new_dist;
t = t_candidate[i];
}
}
/* Finally, look at distance to end point, where t = 1.0 */
new_dist = (P - VT[DEGREE]).mag_squared();
if (new_dist < dist)
{
dist = new_dist;
t = 1.0;
}
}
/* Return the point on the curve at parameter value t */
return t;
}
};
_ETL_END_NAMESPACE
/* === E X T E R N S ======================================================= */
/* === E N D =============================================================== */
#endif
|